2009A&A...500..725H


Query : 2009A&A...500..725H

2009A&A...500..725H - Astronomy and Astrophysics, volume 500, 725-734 (2009/6-3)

The density, the cosmic microwave background, and the proton-to-electron mass ratio in a cloud at redshift 0.9.

HENKEL C., MENTEN K.M., MURPHY M.T., JETHAVA N., FLAMBAUM V.V., BRAATZ J.A., MULLER S., OTT J. and MAO R.Q.

Abstract (from CDS):

Based on measurements with the Effelsberg 100-m telescope, a multi-line study of molecular species is presented toward the gravitational lens system PKS1830-211, which is by far the best known target to study dense cool gas in absorption at intermediate redshift. Determining average radial velocities and performing Large Velocity Gradient radiative transfer calculations, the aims of this study are (1) to determine the density of the gas, (2) to constrain the temperature of the cosmic microwave background (CMB), and (3) to evaluate the proton-to-electron mass ratio at redshift z∼0.89. Analyzing data from six rotational HC3N transitions (this includes the J=7←6 line, which is likely detected for the first time in the interstellar medium) we obtain n(H2)∼2600cm–3 for the gas density of the south-western absorption component, assuming a background source covering factor, which is independent of frequency. With a possibly more realistic frequency dependence proportional to ν0.5 (the maximal exponent permitted by observational boundary conditions), n(H2)∼1700cm–3. Again toward the south-western source, excitation temperatures of molecular species with optically thin lines and higher rotational constants are, on average, consistent with the expected temperature of the cosmic microwave background, TCMB=5.14K. However, individually, there is a surprisingly large scatter which far surpasses expected uncertainties. A comparison of CS J=1←0 and 4←3 optical depths toward the weaker north-western absorption component results in Tex=11K and a 1-σ error of 3K. For the main component, a comparison of velocities determined from ten optically thin NH3 inversion lines with those from five optically thin rotational transitions of HC3N, observed at similar frequencies, constrains potential variations of the proton-to-electron mass ratio µ to Δµ/µ<1.4x10–6 with 3-σ confidence. Also including optically thin rotational lines from other molecular species, it is emphasized that systematic errors are ΔV<1km/s, corresponding to Δµ/µ<1.0x10–6.

Abstract Copyright:

Journal keyword(s): galaxies: abundances - galaxies: ISM - galaxies: individual: PKS1830-211 - gravitational lensing - radio lines: galaxies - elementary particles

Simbad objects: 4

goto Full paper

goto View the references in ADS

Number of rows : 4
N Identifier Otype ICRS (J2000)
RA
ICRS (J2000)
DEC
Mag U Mag B Mag V Mag R Mag I Sp type #ref
1850 - 2024
#notes
1 6C 021803+354230 BLL 02 21 05.4920852208 +35 56 13.848581904   20.0 20.0 19.60   ~ 559 3
2 TMC-1 MoC 04 41 45.9 +25 41 27           ~ 1676 0
3 QSO B1830-211 Bla 18 33 39.9399138048 -21 03 39.368838780     18.70 21   ~ 671 1
4 NAME Local Group GrG ~ ~           ~ 8390 0

To bookmark this query, right click on this link: simbad:objects in 2009A&A...500..725H and select 'bookmark this link' or equivalent in the popup menu