[VV2006] J043814.8-122314 , the SIMBAD biblio

[VV2006] J043814.8-122314 , the SIMBAD biblio (187 results) C.D.S. - SIMBAD4 rel 1.7 - 2021.04.11CEST20:06:00


Sort references on where and how often the object is cited
trying to find the most relevant references on this object.
More on score
Bibcode/DOI Score in Title|Abstract|
Keywords
in a table in teXt, Caption, ... Nb occurence Nb objects in ref Citations
(from ADS)
Title First 3 Authors
2021A&A...645A..78B 50           X         1 4 ~ Super-Eddington accretion in the Q2237+0305 quasar? BERDINA L.A., TSVETKOVA V.S. and SHULGA V.M.
2021MNRAS.501..269D 1570       D S   X C F     29 8 ~ Testing the evolution of correlations between supermassive black holes and their host galaxies using eight strongly lensed quasars. DING X., TREU T., BIRRER S., et al.
2021MNRAS.501..784D 620       D S   X   F     11 8 ~ The Hubble constant from eight time-delay galaxy lenses. DENZEL P., COLES J.P., SAHA P., et al.
2020A&A...633A.107H 345       D     X         8 9 ~ The signature of primordial black holes in the dark matter halos of galaxies. HAWKINS M.R.S.
2020A&A...639A..57A 93           X         2 8 ~ Cosmic dissonance: are new physics or systematics behind a short sound horizon? ARENDSE N., WOJTAK R.J., AGNELLO A., et al.
2020A&A...639A.101M 65       D     X         2 7 ~ TDCOSMO. I. An exploration of systematic uncertainties in the inference of H0 from time-delay cosmography. MILLON M., GALAN A., COURBIN F., et al.
2020A&A...640A.105M viz 420     A D S   X         9 44 ~ COSMOGRAIL. XIX. Time delays in 18 strongly lensed quasars from 15 years of optical monitoring. MILLON M., COURBIN F., BONVIN V., et al.
2020A&A...642A.194G 578       D     X C       12 9 ~ TDCOSMO. III. Dark matter substructure meets dark energy. The effects of (sub)halos on strong-lensing measurements of H0. GILMAN D., BIRRER S. and TREU T.
2020A&A...643A.165B 65       D     X         2 40 ~ TDCOSMO. IV. Hierarchical time-delay cosmography - joint inference of the Hubble constant and galaxy density profiles. BIRRER S., SHAJIB A.J., GALAN A., et al.
2020ApJ...892L..27B 19       D               1 7 ~ Could quasar lensing time delays hint to a core component in halos, instead of H0 tension? BLUM K., CASTORINA E. and SIMONOVIC M.
2020ApJ...895...93C 19       D               1 16 ~ Quasar microlensing variability studies favor shallow accretion disk temperature profiles. CORNACHIONE M.A. and MORGAN C.W.
2020ApJ...895L..29L 19       D               2 7 ~ Determining model-independent H0 and consistency tests. LIAO K., SHAFIELOO A., KEELEY R.E., et al.
2020ApJ...896..111G 718       D     X C       15 19 ~ A second-order moment of microlensing variability as a novel tool to constrain source emission size or discrete lens demographics in extragalactic research. GUERRAS E., DAI X. and MEDIAVILLA E.
2020ApJ...897..127W 65       D     X         2 14 ~ Cosmology-independent estimate of the Hubble constant and spatial curvature using time-delay lenses and quasars. WEI J.-J. and MELIA F.
2020ApJ...900..160L 65       D     X         2 6 ~ H0 reconstruction with Type Ia supernovae, baryon acoustic oscillation and gravitational lensing time delay. LYU M.-Z., HARIDASU B.S., VIEL M., et al.
2020MNRAS.491.6077G 485       D     X C       10 29 ~ Warm dark matter chills out: constraints on the halo mass function and the free-streaming length of dark matter with eight quadruple-image strong gravitational lenses. GILMAN D., BIRRER S., NIERENBERG A., et al.
2020MNRAS.492.3047H 65       D     X         2 45 ~ SHARP - VII. New constraints on the dark matter free-streaming properties and substructure abundance from gravitationally lensed quasars. HSUEH J.-W., ENZI W., VEGETTI S., et al.
2020MNRAS.492.5314N 187           X         4 11 ~ Double dark matter vision: twice the number of compact-source lenses with narrow-line lensing and the WFC3 grism. NIERENBERG A.M., GILMAN D., TREU T., et al.
2020MNRAS.493.1725K 19       D               1 6 ~ Overconstrained gravitational lens models and the Hubble constant. KOCHANEK C.S.
2020MNRAS.494.6072S 93           X         2 18 ~ STRIDES: a 3.9 per cent measurement of the Hubble constant from the strong lens system DES J0408-5354. SHAJIB A.J., BIRRER S., TREU T., et al.
2020MNRAS.498.1406T 187           X         4 6 ~ H0LiCOW - XI. A weak lensing measurement of the external convergence in the field of the lensed quasar B1608+656 using HST and Subaru deep imaging. TIHHONOVA O., COURBIN F., HARVEY D., et al.
2020MNRAS.498.1420W 672       D     X C       14 6 ~ H0LiCOW - XIII. A 2.4 per cent measurement of H0 from lensed quasars: 5.3σ tension between early- and late-Universe probes. WONG K.C., SUYU S.H., CHEN G.C.-F., et al.
2020MNRAS.498.1440R 140           X         3 14 ~ H0LiCOW XII. Lens mass model of WFI2033 - 4723 and blind measurement of its time-delay distance and H0. RUSU C.E., WONG K.C., BONVIN V., et al.
2020MNRAS.498.2871H 47           X         1 27 ~ A 4 per cent measurement of H0 using the cumulative distribution of strong lensing time delays in doubly imaged quasars. HARVEY D.
2020MNRAS.498.3241B 140           X         3 5 ~ STRIDES: Spectroscopic and photometric characterization of the environment and effects of mass along the line of sight to the gravitational lenses DES J0408-5354 and WGD 2038-4008. BUCKLEY-GEER E.J., LIN H., RUSU C.E., et al.
2020MNRAS.499.2845H 19       D               1 28 ~ The KBC void and Hubble tension contradict ΛCDM on a Gpc scale - Milgromian dynamics as a possible solution. HASLBAUER M., BANIK I. and KROUPA P.
2019A&A...622A.165D viz 152       D     X C       3 17 ~ Gaia GraL: Gaia DR2 Gravitational Lens Systems. III. A systematic blind search for new lensed systems. DELCHAMBRE L., KRONE-MARTINS A., WERTZ O., et al.
2019A&A...628L...7T 45           X         1 4 ~ The Hubble constant determined through an inverse distance ladder including quasar time delays and Type Ia supernovae. TAUBENBERGER S., SUYU S.H., KOMATSU E., et al.
2019A&A...629A..43H 475 T   A     X C       9 3 ~ Constraining the geometry and kinematics of the quasar broad emission line region using gravitational microlensing. II. Comparing models with observations in the lensed quasar HE0435-1223. HUTSEMEKERS D., BRAIBANT L., SLUSE D., et al.
2019A&A...629A..97B viz 134           X         3 11 ~ COSMOGRAIL. XVIII. time delays of the quadruply lensed quasar WFI2033-4723. BONVIN V., MILLON M., CHAN J.H.-H., et al.
2019ApJ...871..113L 134           X         3 4 ~ Hubble constant from LSST strong-lens time delays with microlensing systematics. LIAO K.
2019ApJ...879...35D 2123       D     X C       47 29 ~ Constraining quasar relativistic reflection regions and spins with microlensing. DAI X., STEELE S., GUERRAS E., et al.
2019ApJ...883....3L 45           X         1 6 ~ Measuring the distances to quasars at high redshifts with strong lensing. LIAO K.
2019ApJ...886...83K 45           X         1 32 ~ Probing structure in cold gas at z <= 1 with gravitationally lensed quasar sight lines. KULKARNI V.P., CASHMAN F.H., LOPEZ S., et al.
2019ApJ...886L..23L 197       D     X C       4 4 ~ A model-independent determination of the Hubble constant from lensed quasars and supernovae using Gaussian process regression. LIAO K., SHAFIELOO A., KEELEY R.E., et al.
2019ApJ...887..126G 90           X         2 13 ~ Gravitational lens system PS J0147+4630 (Andromeda's Parachute): main lensing galaxy and optical variability of the quasar images. GOICOECHEA L.J. and SHALYAPIN V.N.
2019MNRAS.483.2275L 134           X         3 16 ~ Reconciling the quasar microlensing disc size problem with a wind model of active galactic nucleus. LI Y.-P., YUAN F. and DAI X.
2019MNRAS.484.4726B 179           X   F     3 8 ~ H0LiCOW - IX. Cosmographic analysis of the doubly imaged quasar SDSS 1206+4332 and a new measurement of the Hubble constant. BIRRER S., TREU T., RUSU C.E., et al.
2019MNRAS.487.4492W 45           X         1 3 ~ Generalised model-independent characterisation of strong gravitational lenses - VI. The origin of the formalism intrinsic degeneracies and their influence on H0. WAGNER J.
2019MNRAS.489.2097B 45           X         1 8 ~ Astrometric requirements for strong lensing time-delay cosmography. BIRRER S. and TREU T.
2019MNRAS.490..613S 179           X         4 2 ~ H0LiCOW - X. Spectroscopic/imaging survey and galaxy-group identification around the strong gravitational lens system WFI 2033-4723. SLUSE D., RUSU C.E., FASSNACHT C.D., et al.
2019MNRAS.490.1743C 2867     A D S   X C F     62 5 ~ A SHARP view of H0LiCOW: H0 from three time-delay gravitational lens systems with adaptive optics imaging. CHEN G.C.-F., FASSNACHT C.D., SUYU S.H., et al.
2018A&A...616A.183B viz 45           X         1 5 5 COSMOGRAIL. XVII. Time delays for the quadruply imaged quasar PG 1115+080. BONVIN V., CHAN J.H.H., MILLON M., et al.
2018A&A...616L..11K 131           X C       2 10 6 Gaia GraL: Gaia DR2 gravitational lens systems. I. New quadruply imaged quasar candidates around known quasars. KRONE-MARTINS A., DELCHAMBRE L., WERTZ O., et al.
2018A&A...618A..56D viz 766     A     X C       17 20 ~ Gaia GraL: Gaia DR2 gravitational lens systems. II. The known multiply imaged quasars. DUCOURANT C., WERTZ O., KRONE-MARTINS A., et al.
2018ApJ...859...50F 1671       D     X C       38 76 2 Microlensing and intrinsic variability of the broad emission lines of lensed quasars. FIAN C., GUERRAS E., MEDIAVILLA E., et al.
2018ApJ...869..132F 853 T K A     X C       18 6 ~ Estimate of the accretion disk size in the gravitationally lensed quasar
HE 0435-1223 Using microlensing magnification statistics.
FIAN C., MEDIAVILLA E., JIMENEZ-VICENTE J., et al.
2018MNRAS.473...80T 586       D     X C F     12 5 15 Microlensing makes lensed quasar time delays significantly time variable. TIE S.S. and KOCHANEK C.S.
2018MNRAS.473..210S 105       D     X         3 6 7 Improving time-delay cosmography with spatially resolved kinematics. SHAJIB A.J., TREU T. and AGNELLO A.
2018MNRAS.476.5075S 104       D       C       3 103 6 Gravitational lensing reveals extreme dust-obscured star formation in quasar host galaxies. STACEY H.R., McKEAN J.P., ROBERTSON N.C., et al.
2018MNRAS.477.5657T 1506 T K A     X C       33 5 4 H0LiCOW VIII. A weak-lensing measurement of the external convergence in the field of the lensed quasar
HE 0435-1223.
TIHHONOVA O., COURBIN F., HARVEY D., et al.
2018MNRAS.479.4796B 131           X C       2 32 2 HST imaging of four gravitationally lensed quasars. BATE N.F., VERNARDOS G., O'DOWD M.J., et al.
2017A&A...597A..49G 43           X         1 11 3 MiNDSTEp differential photometry of the gravitationally lensed quasars WFI 2033-4723 and HE 0047-1756: microlensing and a new time delay. GIANNINI E., SCHMIDT R.W., WAMBSGANSS J., et al.
2017A&A...600A..79A 12 2 Apparent quasar disc sizes in the "bird's nest" paradigm. ABOLMASOV P.
2017A&A...604A..46B 426           X C       9 7 ~ Analysis of luminosity distributions of strong lensing galaxies: subtraction of diffuse lensed signal. BIERNAUX J., MAGAIN P. and HAURET C.
2017A&A...607A..32B 43           X         1 3 1 Constraining the geometry and kinematics of the quasar broad emission line region using gravitational microlensing. I. Models and simulations. BRAIBANT L., HUTSEMEKERS D., SLUSE D., et al.
2017ApJ...835..132M 936 T K A D S   X C       20 13 9 Probing the broad-line region and the accretion disk in the lensed quasars
HE 0435-1223, WFI 2033-4723, and HE 2149-2745 using gravitational microlensing.
MOTTA V., MEDIAVILLA E., ROJAS K., et al.
2017ApJ...836..141M 92           X         2 5 35 Quantifying environmental and line-of-sight effects in models of strong gravitational lens systems. McCULLY C., KEETON C.R., WONG K.C., et al.
2017ApJ...836..206G 912       D     X C       21 7 7 Extended X-ray monitoring of gravitational lenses with Chandra and joint constraints on X-ray emission regions. GUERRAS E., DAI X., STEELE S., et al.
2017ApJ...847...96L 60       D     X         2 9 3 Centrally concentrated X-ray radiation from an extended accreting corona in active galactic nuclei. LIU B.F., TAAM R.E., QIAO E., et al.
2017ApJ...850...94W viz 17       D               1 27 7 A spectroscopic survey of the fields of 28 strong gravitational lenses: implications for H0. WILSON M.L., ZABLUDOFF A.I., KEETON C.R., et al.
2017MNRAS.465.4634D 742       D S   X C       16 9 15 H0LiCOW. VI. Testing the fidelity of lensed quasar host galaxy reconstruction. DING X., LIAO K., TREU T., et al.
2017MNRAS.465.4895W 1562 T   A     X C       35 13 53 H0LiCOW - IV. Lens mass model of
HE 0435-1223 and blind measurement of its time-delay distance for cosmology.
WONG K.C., SUYU S.H., AUGER M.W., et al.
2017MNRAS.465.4914B viz 1720 T K A D S   X C       38 9 156 H0LiCOW - V. New COSMOGRAIL time delays of
HE 0435-1223: H0 to 3.8 per cent precision from strong lensing in a flat ΛCDM model.
BONVIN V., COURBIN F., SUYU S.H., et al.
2017MNRAS.467.4220R viz 3228 T K A D     X C F     73 1 35 H0LiCOW - III. Quantifying the effect of mass along the line of sight to the gravitational lens
HE 0435-1223 through weighted galaxy counts.
RUSU C.E., FASSNACHT C.D., SLUSE D., et al.
2017MNRAS.468.2590S 1841   K A D     X C F     42 6 67 H0LiCOW - I. H0 Lenses in COSMOGRAIL's Wellspring: program overview. SUYU S.H., BONVIN V., COURBIN F., et al.
2017MNRAS.469.3713H 44           X         1 11 13 SHARP - IV. An apparent flux-ratio anomaly resolved by the edge-on disc in B0712+472. HSUEH J.-W., OLDHAM L., SPINGOLA C., et al.
2017MNRAS.470.4838S viz 1745 T K A D     X C F     39 449 24 H0LiCOW - II. Spectroscopic survey and galaxy-group identification of the strong gravitational lens system
HE 0435-1223.
SLUSE D., SONNENFELD A., RUMBAUGH N., et al.
2017MNRAS.471.2013A 43           X         1 22 14 Quasar lenses and galactic streams: outlier selection and Gaia multiplet detection. AGNELLO A.
2017MNRAS.471.2224N 1024 T K A D     X C       23 10 20 Probing dark matter substructure in the gravitational lens

HE 0435-1223
with the WFC3 grism.
NIERENBERG A.M., TREU T., BRAMMER G., et al.
2017MNRAS.472...90D 1379       D S   X C F     30 146 9 H0LiCOW VII: cosmic evolution of the correlation between black hole mass and host galaxy luminosity. DING X., TREU T., SUYU S.H., et al.
2017MNRAS.472.2906W 44           X         1 4 5 Strongly lensed gravitational waves and electromagnetic signals as powerful cosmic rulers. WEI J.-J. and WU X.-F.
2016A&A...585A..84B viz 644       D     X C       15 7 2 Analysis of luminosity distributions and the shape parameters of strong gravitational lensing elliptical galaxies. BIERNAUX J., MAGAIN P., SLUSE D., et al.
2016A&A...585A..88B 52           X         1 3 30 COSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses. XV. Assessing the achievability and precision of time-delay measurements. BONVIN V., TEWES M., COURBIN F., et al.
2016A&A...592A..23B 85           X         2 5 6 The different origins of high- and low-ionization broad emission lines revealed by gravitational microlensing in the Einstein cross. BRAIBANT L., HUTSEMEKERS D., SLUSE D., et al.
2016A&ARv..24...11T 49           X         1 7 53 Time delay cosmography. TREU T. and MARSHALL P.J.
2016ApJ...821..111K 42           X         1 5 2 On the problem of deformed spherical systems in modified newtonian dynamics. KO C.-M.
2016ApJ...824...53C 42           X         1 9 4 The wide-angle outflow of the lensed z = 1.51 AGN HS 0810+2554. CHARTAS G., CAPPI M., HAMANN F., et al.
2016ApJ...832...46M 17       D               1 58 2 Peculiar transverse velocities of galaxies from quasar microlensing. Tentative estimate of the peculiar velocity dispersion at z ∼ 0.5. MEDIAVILLA E., JIMENEZ-VICENTE J., MUNOZ J.A., et al.
2016ApJ...833..194W viz 25     A               1 3427 8 A spectroscopic survey of the fields of 28 strong gravitational lenses: the group catalog. WILSON M.L., ZABLUDOFF A.I., AMMONS S.M., et al.
2016MNRAS.458....2R viz 42           X         1 128 24 Subaru Telescope adaptive optics observations of gravitationally lensed quasars in the Sloan Digital Sky Survey. RUSU C.E., OGURI M., MINOWA Y., et al.
2016MNRAS.458.2423Z 1213     A D S   X C       28 18 18 Probing the cool interstellar and circumgalactic gas of three massive lensing galaxies at z = 0.4-0.7. ZAHEDY F.S., CHEN H.-W., RAUCH M., et al.
2016MNRAS.459..573A 42           X         1 8 1 Kernel regression estimates of time delays between gravitationally lensed fluxes. AL OTAIBI S., TINO P., CUEVAS-TELLO J.C., et al.
2016MNRAS.461.3714T 777 T K A S   X C F     15 11 3 A simple method to determine time delays in the presence of microlensing: application to HE 0435-1112 and PG 1115+080. TSVETKOVA V.S., SHULGA V.M. and BERDINA L.A.
2016MNRAS.461.4466C 142       D     X   F     3 14 2 Magnification relations of quad lenses and applications on Einstein crosses. CHU Z., LI G.L., LIN W.P., et al.
2015A&A...580A..38R 305       D     X C       7 50 19 H0 from ten well-measured time delay lenses. RATHNA KUMAR S., STALIN C.S. and PRABHU T.P.
2015ApJ...798...95B viz 86           X         2 6 29 The structure of HE 1104-1805 from infrared to X-ray. BLACKBURNE J.A., KOCHANEK C.S., CHEN B., et al.
2015ApJ...799...48B 16       D               1 20 5 Strongly lensed jets, time delays, and the value of H0. BARNACKA A., GELLER M.J., DELL'ANTONIO I.P., et al.
2015ApJ...799..149J 16       D               1 64 23 Dark matter mass fraction in lens galaxies: new estimates from microlensing. JIMENEZ-VICENTE J., MEDIAVILLA E., KOCHANEK C.S., et al.
2015ApJ...804...57S 41           X         1 14 5 Spatially resolving the kinematics of the ≲ 100 µas quasar broad-line region using spectroastrometry. STERN J., HENNAWI J.F. and POTT J.-U.
2015ApJ...805..161W 16       D               1 31 8 Broad iron emission from gravitationally lensed quasars observed by Chandra. WALTON D.J., REYNOLDS M.T., MILLER J.M., et al.
2015ApJ...806..251J 181       D     X C       4 74 17 Probing the dark matter radial profile in lens galaxies and the size of X-ray emitting region in quasars with microlensing. JIMENEZ-VICENTE J., MEDIAVILLA E., KOCHANEK C.S., et al.
2015ApJ...806..258M viz 46           X         1 6 34 A consistent picture emerges: a compact X-ray continuum emission region in the gravitationally lensed quasar SDSS J0924+0219. MacLEOD C.L., MORGAN C.W., MOSQUERA A., et al.
2015ApJS..219...29M viz 99       D     X         3 10653 13 A spectroscopic survey of the fields of 28 strong gravitational lenses. MOMCHEVA I.G., WILLIAMS K.A., COOL R.J., et al.
2015MNRAS.451.4375F 17       D               1 57 91 Properties of AGN coronae in the NuSTAR era. FABIAN A.C., LOHFINK A., KARA E., et al.
2015MNRAS.454..287J 617     A D S   X C       14 45 14 Observations of radio-quiet quasars at 10-mas resolution by use of gravitational lensing. JACKSON N., TAGORE A.S., ROBERTS C., et al.
2014A&A...565L..11B 600 T K A S   X C       12 2 14 Microlensing of the broad-line region in the quadruply imaged quasar HE 0435-1223. BRAIBANT L., HUTSEMEKERS D., SLUSE D., et al.
2014ApJ...783...47J 464       D     X C       11 26 33 The average size and temperature profile of quasar accretion disks. JIMENEZ-VICENTE J., MEDIAVILLA E., KOCHANEK C.S., et al.
2014ApJ...789..125B viz 241 T K A     X         5 3 43 The optical, ultraviolet, and X-ray structure of the quasar He 0435-1223. BLACKBURNE J.A., KOCHANEK C.S., CHEN B., et al.
2014ApJ...793...96S 303       D     X C       7 20 40 A calibration of the stellar mass fundamental plane at z ∼ 0.5 using the micro-lensing-induced flux ratio anomalies of macro-lensed quasars. SCHECHTER P.L., POOLEY D., BLACKBURNE J.A., et al.
2014MNRAS.437..600S 16       D               2 40 30 Hubble constant and dark energy inferred from free-form determined time delay distances. SERENO M. and PARAFICZ D.
2014MNRAS.438.1435C 350     A     X C       8 11 17 Spatially resolved velocity maps of halo gas around two intermediate-redshift galaxies. CHEN H.-W., GAUTHIER J.-R., SHARON K., et al.
2014MNRAS.439.2494O 16       D               1 162 55 The stellar and dark matter distributions in elliptical galaxies from the ensemble of strong gravitational lenses. OGURI M., RUSU C.E. and FALCO E.E.
2014MNRAS.442.1090H 341       D     X C       8 16 6 Modelling spikes in quasar accretion disc temperature. HALL P.B., NOORDEH E.S., CHAJET L.S., et al.
2013A&A...549A..71K 42         O X         1 14 38 Resolving stellar populations with crowded field 3D spectroscopy. KAMANN S., WISOTZKI L. and ROTH M.M.
2013A&A...551A.104R viz 144     A   O X         4 9 5 Flux and color variations of the doubly imaged quasar UM 673. RICCI D., ELYIV A., FINET F., et al.
2013A&A...553A.120T 502           X C       11 3 61 COSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses. XI. Techniques for time delay measurement in presence of microlensing. TEWES M., COURBIN F. and MEYLAN G.
2013A&A...553A.121E viz 43           X         1 12 36 COSMOGRAIL: the COSmological MOnitoring. of GRAvItational Lenses. XII. Time delays of the doubly lensed quasars SDSS J1206+4332 and HS 2209+1914. EULAERS E., TEWES M., MAGAIN P., et al.
2013A&A...556A..22T viz 48           X         1 11 90 COSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses. XIII. Time delays and 9-yr optical monitoring of the lensed quasar RX J1131-1231. TEWES M., COURBIN F., MEYLAN G., et al.
2013A&A...559A..37S 90           X         2 8 80 Mass-sheet degeneracy, power-law models and external convergence: Impact on the determination of the Hubble constant from gravitational lensing. SCHNEIDER P. and SLUSE D.
2013ApJ...764..160G 16       D               4 53 44 Microlensing of quasar broad emission lines: constraints on broad line region size. GUERRAS E., MEDIAVILLA E., JIMENEZ-VICENTE J., et al.
2013ApJ...764..186F 42           X         1 10 21 A two-year time delay for the lensed quasar SDSS J1029+2623. FOHLMEISTER J., KOCHANEK C.S., FALCO E.E., et al.
2013ApJ...769...53M 86           X   F     1 12 82 The structure of the X-ray and optical emitting regions of the lensed quasar Q 2237+0305. MOSQUERA A.M., KOCHANEK C.S., CHEN B., et al.
2013ApJ...769L...7R 18       D               1 28 63 On the size and location of the X-ray emitting coronae around black holes. REIS R.C. and MILLER J.M.
2013ApJ...773...35M 43           X         1 7 27 Detection of substructure in the gravitationally lensed quasar MG0414+0534 using mid-infrared and radio VLBI observations. MacLEOD C.L., JONES R., AGOL E., et al.
2013ApJ...778..123G 16       D               6 41 9 Microlensing of quasar ultraviolet iron emission. GUERRAS E., MEDIAVILLA E., JIMENEZ-VICENTE J., et al.
2013MNRAS.434.3305E 40           X         1 8 6 Search for gravitational lens candidates in the XMM-LSS/CFHTLS common field. ELYIV A., MELNYK O., FINET F., et al.
2013PASA...30....4F viz 16       D               1 447 4 Optical Corrections to the Veron-Cetty and Veron Quasar Catalogue. FLESCH E.
2012A&A...538A..99S 175       D     X         5 72 45 COSMOGRAIL: the COSmological MOnitoring of GRAvItational lenses. X. Modeling based on high-precision astrometry of a sample of 25 lensed quasars: consequences for ellipticity, shear, and astrometric anomalies. SLUSE D., CHANTRY V., MAGAIN P., et al.
2012A&A...544A..62S viz 810       D     X C       20 47 67 Microlensing of the broad line region in 17 lensed quasars. SLUSE D., HUTSEMEKERS D., COURBIN F., et al.
2012ApJ...744...90B 16       D               1 27 8 A graphics processing unit-enabled, high-resolution cosmological microlensing parameter survey. BATE N.F. and FLUKE C.J.
2012ApJ...744..111P 96       D     X         3 16 39 X-ray and optical flux ratio anomalies in quadruply lensed quasars. II. Mapping the dark matter content in elliptical galaxies. POOLEY D., RAPPAPORT S., BLACKBURNE J.A., et al.
2012ApJ...751..106J 95       D     X         3 24 43 A robust determination of the size of quasar accretion disks using gravitational microlensing. JIMENEZ-VICENTE J., MEDIAVILLA E., MUNOZ J.A., et al.
2012ApJ...755...24C 1907   K A D     X C       48 13 35 X-ray monitoring of gravitational lenses with Chandra. CHEN B., DAI X., KOCHANEK C.S., et al.
2012ApJ...755...31C viz 16       D               2 311 26 Testing the dark energy with gravitational lensing statistics. CAO S., COVONE G. and ZHU Z.-H.
2012ApJ...756...52M viz 163           X         4 8 67 Further evidence that quasar X-ray emitting regions are compact: X-ray and optical microlensing in the lensed quasar Q J0158-4325. MORGAN C.W., HAINLINE L.J., CHEN B., et al.
2012MNRAS.419..936F 1534 T   A     X C       37 13 47 Substructure in the lens He 0435-1223. FADELY R. and KEETON C.R.
2012MNRAS.420.2944W 95       D         F     2 41 5 The fundamental surface of quad lenses. WOLDESENBET A.G. and WILLIAMS L.L.R.
2012MNRAS.427.1867A 175       D       C F     8 21 10 Microlensing evidence for super-Eddington disc accretion in quasars. ABOLMASOV P. and SHAKURA N.I.
2011A&A...528A..42R viz 771 T   A   O X C       18 18 13 Flux and color variations of the quadruply imaged quasar He 0435-1223. RICCI D., POELS J., ELYIV A., et al.
2011A&A...536A..53C viz 1129 T   A S   X C       26 9 82 COSMOGRAIL: the COSmological MOnitoring of GRAvItational lenses. IX. Time delays, lens dynamics and baryonic fraction in He 0435-1223. COURBIN F., CHANTRY V., REVAZ Y., et al.
2011AJ....141..101F 551     A D S   X C F     12 32 21 Near-infrared K and l' flux ratios in six lensed quasars. FADELY R. and KEETON C.R.
2011ApJ...726...84W 843       D     X C       21 14 52 The effect of environment on shear in strong gravitational lenses. WONG K.C., KEETON C.R., WILLIAMS K.A., et al.
2011ApJ...728..145M 1339   K A D S   X C       33 11 34 A study of gravitational lens chromaticity using ground-based narrowband photometry. MOSQUERA A.M., MUNOZ J.A., MEDIAVILLA E., et al.
2011ApJ...729...34B 213       D     X C       5 55 113 Sizes and temperature profiles of quasar accretion disks from chromatic microlensing. BLACKBURNE J.A., POOLEY D., RAPPAPORT S., et al.
2011ApJ...738...96M 55       D     X         2 90 67 The microlensing properties of a sample of 87 lensed quasars. MOSQUERA A.M. and KOCHANEK C.S.
2011BaltA..20..125H 4 4 Towards the automatic estimation of time delays of gravitational lenses. HIRV A., OLSPERT N. and PELT J.
2011MNRAS.410.2167F 16       D               2 21 35 Galaxy number counts and implications for strong lensing. FASSNACHT C.D., KOOPMANS L.V.E. and WONG K.C.
2011MNRAS.413..367S 40           X         1 12 30 Supernova tests of the timescape cosmology. SMALE P.R. and WILTSHIRE D.L.
2010A&A...518A..10V viz 16       D               2 168912 373 A catalogue of quasars and active nuclei: 13th edition. VERON-CETTY M.-P. and VERON P.
2010A&A...522A..95C 156           X         4 52 23 COSMOGRAIL: the COSmological MOnitoring of GRAvItational lenses. VIII. Deconvolution of high resolution near-IR images and simple mass models for 7 gravitationally lensed quasars. CHANTRY V., SLUSE D. and MAGAIN P.
2010ApJ...709..552C 952       D     X   F     24 105 10 Identifying anomalies in gravitational lens time delays. CONGDON A.B., KEETON C.R. and NORDGREN C.E.
2010ApJ...711..246F 40           X         1 15 45 Improved constraints on the gravitational lens Q0957+561. II. Strong lensing. FADELY R., KEETON C.R., NAKAJIMA R., et al.
2010ApJ...712.1129M 62       D     X         2 12 170 The quasar accretion disk size-black hole mass relation. MORGAN C.W., KOCHANEK C.S., MORGAN N.D., et al.
2010ApJ...712.1378P 173       D     X   F     4 20 42 The Hubble constant inferred from 18 time-delay lenses. PARAFICZ D. and HJORTH J.
2010ApJ...716.1579L 16       D               2 48 34 Cosmic evolution of virial and stellar mass in massive early-type galaxies. LAGATTUTA D.J., FASSNACHT C.D., AUGER M.W., et al.
2010ApJ...718.1079B 459     A S   X C F     9 1 14 The effect of a time-varying accretion disk size on quasar microlensing light curves. BLACKBURNE J.A. and KOCHANEK C.S.
2009ApJ...699.1578M 77           X         2 29 30 Detection of a companion lens galaxy using the mid-infrared flux ratios of the gravitationally lensed quasar H1413+117. MacLEOD C.L., KOCHANEK C.S. and AGOL E.
2009ApJ...706.1451M 93       D         F     2 70 41 Microlensing-based estimate of the mass fraction in compact objects in lens galaxies. MEDIAVILLA E., MUNOZ J.A., FALCO E., et al.
2009RMxAC..35..195F 77             C       1 39 0 Cosmology with gravitational lenses. FALCO E.E.
2008A&A...480..647E 38           X         1 24 32 Microlensing variability in the gravitationally lensed quasar. QSO 2237+0305 = the Einstein Cross. I. Spectrophotometric monitoring with the VLT. EIGENBROD A., COURBIN F., SLUSE D., et al.
2008A&A...485..403O 92       D     X         3 67 13 Extinction properties of lensing galaxies. OESTMAN L., GOOBAR A. and MOERTSELL E.
2008AJ....135..374B 38           X         1 11 11 HE 1113-0641: the smallest-separation quadruple lens identified by a ground-based optical telescope. BLACKBURNE J.A., WISOTZKI L. and SCHECHTER P.L.
2008ApJ...674...75L 77           X         2 2 3 Strong-lensing time delay: a new way of measuring cosmic shear. LIEU R.
2008ApJ...685..725W 15       D               2 33 9 Lensed image angles: new statistical evidence for substructure. WILLIAMS L.L.R., FOLEY P., FARNSWORTH D., et al.
2007AJ....134..668A 46 33 The gravitational lens-galaxy group connection. II. Groups associated with B2319+051 and B1600+434. AUGER M.W., FASSNACHT C.D., ABRAHAMSE A.L., et al.
2007ApJ...660....1O 1 46 101 Gravitational lens time delays: a statistical assessment of lens model dependences and implications for the global Hubble constant. OGURI M.
2007ApJ...662...62F viz 2 8 32 A time delay for the cluster-lensed quasar SDSS J1004+4112. FOHLMEISTER J., KOCHANEK C.S., FALCO E.E., et al.
2006A&A...450..461S 28 16 COSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses. IV. Models of prospective time-delay lenses. SAHA P., COURBIN F., SLUSE D., et al.
2006A&A...451..759E 45 42 COSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses. III. Redshift of the lensing galaxy in eight gravitationally lensed quasars. EIGENBROD A., COURBIN F., MEYLAN G., et al.
2006A&A...452...25U 23 16 Time delay of SBS 0909+532. ULLAN A., GOICOECHEA L.J., ZHELEZNYAK A.P., et al.
2006A&A...455..773V viz 108221 545 A catalogue of quasars and active nuclei: 12th edition. VERON-CETTY M.-P. and VERON P.
2006A&A...460..647D         O           21 16 A simple analysis of halo density profiles using gravitational lensing time delays. DOBKE B.M. and KING L.J.
2006AJ....132..999O viz 1 21 75 The Sloan Digital Sky Survey Quasar Lens Search. I. Candidate selection algorithm. OGURI M., INADA N., PINDOR B., et al.
2006ApJ...640...47K 115 T K                 26 100 The time delays of gravitational lens
HE 0435-1223: an early-type galaxy with a rising rotation curve.
KOCHANEK C.S., MORGAN N.D., FALCO E.E., et al.
2006ApJ...641...70O 38   K                 27 27 Spectroscopic redshifts for seven lens galaxies. OFEK E.O., MAOZ D., RIX H.-W., et al.
2006ApJ...642...22Y 38   K                 30 33 Halo structures of gravitational lens galaxies. YOO J., KOCHANEK C.S., FALCO E.E., et al.
2006ApJ...649..616P 2 60 245 Probing the coevolution of supermassive black holes and galaxies using gravitationally lensed quasar hosts. PENG C.Y., IMPEY C.D., RIX H.-W., et al.
2006ApJ...650L..17S 1 24 51 The Hubble time inferred from 10 time delay lenses. SAHA P., COLES J., MACCIO A.V., et al.
2006MNRAS.365.1243D 22 37 Finite source effects in strong lensing: implications for the substructure mass scale. DOBLER G. and KEETON C.R.
2006MNRAS.370.1339H 2 5 22 Isophotal shapes of elliptical/lenticular galaxies from the Sloan Digital Sky Survey. HAO C.N., MAO S., DENG Z.G., et al.
2006NewAR..49..573R 8 0 PSF-fitting techniques for crowded field 3D spectroscopy. ROTH M.M.
2006NewAR..50..252R 6 0 The Euro3D research training network. ROTH M.M.
2005AJ....129.2531M 113 T K                 31 35 The lens redshift and galaxy environment for
HE 0435-1223.
MORGAN N.D., KOCHANEK C.S., PEVUNOVA O., et al.
2005ApJ...622...72M 1 15 37 Testing ΛCDM with gravitational lensing constraints on small-scale structure. METCALF R.B.
2005ApJ...622..106O 25 42 Discovery of two gravitationally lensed quasars with image separations of 3" from the sloan digital sky survey. OGURI M., INADA N., HENNAWI J.F., et al.
2005ApJ...635...35K 30 52 Identifying lenses with small-scale structure. II. Fold lenses. KEETON C.R., GAUDI B.S. and PETTERS A.O.
2004AJ....127.2617M 31 35 WFI J2026-4536 and WFI J2033-4723: two new quadruple gravitational lenses. MORGAN N.D., CALDWELL J.A.R., SCHECHTER P.L., et al.
2004AN....325..135W 10 9 Integral field spectrophotometry of gravitationally lensed QSOs with PMAS. WISOTZKI L., BECKER T., CHRISTENSEN L., et al.
2004ApJ...603..531R 32 23 Spectrophotometry of planetary nebulae in the bulge of M31. ROTH M.M., BECKER T., KELZ A., et al.
2004ApJ...610...69K 3 19 142 Tests for substructure in gravitational lenses. KOCHANEK C.S. and DALAL N.
2004IAUS..220..103S 1 7 17 The dark matter content of lensing galaxies at 1.5 Re. SCHECHTER P.L. and WAMBSGANSS J.
2003A&A...408..455W 114 T K                 10 54 Integral-field spectrophotometry of the quadruple QSO
HE 0435-1223: Evidence for microlensing.
WISOTZKI L., BECKER T., CHRISTENSEN L., et al.
2003A&A...412..399V 1 72 145 A catalogue of quasars and active nuclei: 11th edition. VERON-CETTY M.-P. and VERON P.
2003ApJ...598..138K 2 23 103 Identifying lenses with small-scale structure. I. Cusp lenses. KEETON C.R., GAUDI B.S. and PETTERS A.O.
2003MNRAS.343..639O 78 60 The redshift distribution of gravitational lenses revisited: constraints on galaxy mass evolution. OFEK E.O., RIX H.-W. and MAOZ D.
2002A&A...395...17W 112 T K                 10 42
HE 0435-1223: A wide separation quadruple QSO and gravitational lens.
WISOTZKI L., SCHECHTER P.L., BRADT H.V., et al.

goto View the references in ADSLimited to 100


2021.04.11-20:06:01

© Université de Strasbourg/CNRS

    • Contact