[VV2006] J203342.1-472343 , the SIMBAD biblio

[VV2006] J203342.1-472343 , the SIMBAD biblio (100 results) C.D.S. - SIMBAD4 rel 1.7 - 2021.04.17CEST02:34:23


Sort references on where and how often the object is cited
trying to find the most relevant references on this object.
More on score
Bibcode/DOI Score in Title|Abstract|
Keywords
in a table in teXt, Caption, ... Nb occurence Nb objects in ref Citations
(from ADS)
Title First 3 Authors
2021MNRAS.500.3667S 1470       D S   X C       28 30 ~ The rocky road to quiescence: compaction and quenching of quasar host galaxies at z ∼ 2. STACEY H.R., McKEAN J.P., POWELL D.M., et al.
2021MNRAS.501..269D 520       D S   X   F     9 8 ~ Testing the evolution of correlations between supermassive black holes and their host galaxies using eight strongly lensed quasars. DING X., TREU T., BIRRER S., et al.
2021MNRAS.501..784D 870       D S   X C F     15 8 ~ The Hubble constant from eight time-delay galaxy lenses. DENZEL P., COLES J.P., SAHA P., et al.
2020A&A...633A.107H 252       D     X         6 9 ~ The signature of primordial black holes in the dark matter halos of galaxies. HAWKINS M.R.S.
2020A&A...639A..57A 93           X         2 8 ~ Cosmic dissonance: are new physics or systematics behind a short sound horizon? ARENDSE N., WOJTAK R.J., AGNELLO A., et al.
2020A&A...639A.101M 252       D     X         6 7 ~ TDCOSMO. I. An exploration of systematic uncertainties in the inference of H0 from time-delay cosmography. MILLON M., GALAN A., COURBIN F., et al.
2020A&A...640A.105M viz 65       D     X         2 44 ~ COSMOGRAIL. XIX. Time delays in 18 strongly lensed quasars from 15 years of optical monitoring. MILLON M., COURBIN F., BONVIN V., et al.
2020A&A...642A.193M viz 47           X         1 11 ~ TDCOSMO. II. Six new time delays in lensed quasars from high-cadence monitoring at the MPIA 2.2 m telescope. MILLON M., COURBIN F., BONVIN V., et al.
2020A&A...642A.194G 392       D     X C       8 9 ~ TDCOSMO. III. Dark matter substructure meets dark energy. The effects of (sub)halos on strong-lensing measurements of H0. GILMAN D., BIRRER S. and TREU T.
2020A&A...643A.165B 65       D     X         2 40 ~ TDCOSMO. IV. Hierarchical time-delay cosmography - joint inference of the Hubble constant and galaxy density profiles. BIRRER S., SHAJIB A.J., GALAN A., et al.
2020ApJ...892L..27B 19       D               1 7 ~ Could quasar lensing time delays hint to a core component in halos, instead of H0 tension? BLUM K., CASTORINA E. and SIMONOVIC M.
2020ApJ...895...93C 19       D               1 16 ~ Quasar microlensing variability studies favor shallow accretion disk temperature profiles. CORNACHIONE M.A. and MORGAN C.W.
2020ApJ...897..127W 65       D     X         2 14 ~ Cosmology-independent estimate of the Hubble constant and spatial curvature using time-delay lenses and quasars. WEI J.-J. and MELIA F.
2020ApJ...900..160L 65       D     X         2 6 ~ H0 reconstruction with Type Ia supernovae, baryon acoustic oscillation and gravitational lensing time delay. LYU M.-Z., HARIDASU B.S., VIEL M., et al.
2020MNRAS.491.6077G 625       D     X C       13 29 ~ Warm dark matter chills out: constraints on the halo mass function and the free-streaming length of dark matter with eight quadruple-image strong gravitational lenses. GILMAN D., BIRRER S., NIERENBERG A., et al.
2020MNRAS.492.5314N 653     A D     X C F     13 11 ~ Double dark matter vision: twice the number of compact-source lenses with narrow-line lensing and the WFC3 grism. NIERENBERG A.M., GILMAN D., TREU T., et al.
2020MNRAS.493.1725K 19       D               1 6 ~ Overconstrained gravitational lens models and the Hubble constant. KOCHANEK C.S.
2020MNRAS.494.6072S 93           X         2 18 ~ STRIDES: a 3.9 per cent measurement of the Hubble constant from the strong lens system DES J0408-5354. SHAJIB A.J., BIRRER S., TREU T., et al.
2020MNRAS.498.1420W 532       D     X C       11 6 ~ H0LiCOW - XIII. A 2.4 per cent measurement of H0 from lensed quasars: 5.3σ tension between early- and late-Universe probes. WONG K.C., SUYU S.H., CHEN G.C.-F., et al.
2020MNRAS.498.1440R 1707 T   A     X C       35 14 ~ H0LiCOW XII. Lens mass model of
WFI2033 - 4723 and blind measurement of its time-delay distance and H0.
RUSU C.E., WONG K.C., BONVIN V., et al.
2020MNRAS.498.3241B 140           X         3 5 ~ STRIDES: Spectroscopic and photometric characterization of the environment and effects of mass along the line of sight to the gravitational lenses DES J0408-5354 and WGD 2038-4008. BUCKLEY-GEER E.J., LIN H., RUSU C.E., et al.
2020MNRAS.499.2845H 19       D               1 28 ~ The KBC void and Hubble tension contradict ΛCDM on a Gpc scale - Milgromian dynamics as a possible solution. HASLBAUER M., BANIK I. and KROUPA P.
2019A&A...622A.165D viz 108       D       C       2 17 ~ Gaia GraL: Gaia DR2 Gravitational Lens Systems. III. A systematic blind search for new lensed systems. DELCHAMBRE L., KRONE-MARTINS A., WERTZ O., et al.
2019A&A...629A..97B viz 1684 T K A S   X C       35 11 ~ COSMOGRAIL. XVIII. time delays of the quadruply lensed quasar
WFI2033-4723.
BONVIN V., MILLON M., CHAN J.H.-H., et al.
2019ApJ...883....3L 45           X         1 6 ~ Measuring the distances to quasars at high redshifts with strong lensing. LIAO K.
2019ApJ...887..126G 45           X         1 13 ~ Gravitational lens system PS J0147+4630 (Andromeda's Parachute): main lensing galaxy and optical variability of the quasar images. GOICOECHEA L.J. and SHALYAPIN V.N.
2019MNRAS.490..613S 1568 T   A D     X C F     33 2 ~ H0LiCOW - X. Spectroscopic/imaging survey and galaxy-group identification around the strong gravitational lens system
WFI 2033-4723.
SLUSE D., RUSU C.E., FASSNACHT C.D., et al.
2019MNRAS.490.1743C 45           X         1 5 ~ A SHARP view of H0LiCOW: H0 from three time-delay gravitational lens systems with adaptive optics imaging. CHEN G.C.-F., FASSNACHT C.D., SUYU S.H., et al.
2018A&A...616L..11K 44           X         1 10 6 Gaia GraL: Gaia DR2 gravitational lens systems. I. New quadruply imaged quasar candidates around known quasars. KRONE-MARTINS A., DELCHAMBRE L., WERTZ O., et al.
2018A&A...618A..56D viz 200     A     X C       4 20 ~ Gaia GraL: Gaia DR2 gravitational lens systems. II. The known multiply imaged quasars. DUCOURANT C., WERTZ O., KRONE-MARTINS A., et al.
2018A&A...620A..68H viz 17       D               1 101 ~ Optical linear polarization measurements of quasars obtained with the Very Large Telescope at Paranal Observatory. HUTSEMEKERS D., BORGUET B., SLUSE D., et al.
2018ApJ...859...50F 627       D     X C       14 76 2 Microlensing and intrinsic variability of the broad emission lines of lensed quasars. FIAN C., GUERRAS E., MEDIAVILLA E., et al.
2018ApJ...869..106M viz 461 T K A     X C       9 9 ~ Accretion disk size measurement and time delays in the lensed quasar
WFI 2033-4723.
MORGAN C.W., HYER G.E., BONVIN V., et al.
2018MNRAS.473..210S 18       D               1 6 7 Improving time-delay cosmography with spatially resolved kinematics. SHAJIB A.J., TREU T. and AGNELLO A.
2018MNRAS.476.5075S 104       D       C       4 103 6 Gravitational lensing reveals extreme dust-obscured star formation in quasar host galaxies. STACEY H.R., McKEAN J.P., ROBERTSON N.C., et al.
2018MNRAS.477.5657T 44           X         1 5 4 H0LiCOW VIII. A weak-lensing measurement of the external convergence in the field of the lensed quasar HE 0435-1223. TIHHONOVA O., COURBIN F., HARVEY D., et al.
2018MNRAS.479.4345A 44           X         1 33 14 DES meets Gaia: discovery of strongly lensed quasars from a multiplet search. AGNELLO A., LIN H., KUROPATKIN N., et al.
2018MNRAS.479.4796B 174           X C       3 32 2 HST imaging of four gravitationally lensed quasars. BATE N.F., VERNARDOS G., O'DOWD M.J., et al.
2017A&A...597A..49G 1601 T   A S   X C       35 11 3 MiNDSTEp differential photometry of the gravitationally lensed quasars
WFI 2033-4723 and HE 0047-1756: microlensing and a new time delay.
GIANNINI E., SCHMIDT R.W., WAMBSGANSS J., et al.
2017ApJ...835..132M 1107 T K A D S   X C       24 13 9 Probing the broad-line region and the accretion disk in the lensed quasars HE 0435-1223,
WFI 2033-4723, and HE 2149-2745 using gravitational microlensing.
MOTTA V., MEDIAVILLA E., ROJAS K., et al.
2017ApJ...850...94W viz 17       D               1 27 7 A spectroscopic survey of the fields of 28 strong gravitational lenses: implications for H0. WILSON M.L., ZABLUDOFF A.I., KEETON C.R., et al.
2017MNRAS.465.4634D 316       D S   X C       6 9 15 H0LiCOW. VI. Testing the fidelity of lensed quasar host galaxy reconstruction. DING X., LIAO K., TREU T., et al.
2017MNRAS.465.4914B viz 60           X         1 9 156 H0LiCOW - V. New COSMOGRAIL time delays of HE 0435-1223: H0 to 3.8 per cent precision from strong lensing in a flat ΛCDM model. BONVIN V., COURBIN F., SUYU S.H., et al.
2017MNRAS.468.2590S 1160   K A D     X C F     26 6 67 H0LiCOW - I. H0 Lenses in COSMOGRAIL's Wellspring: program overview. SUYU S.H., BONVIN V., COURBIN F., et al.
2017MNRAS.470.4838S viz 128           X         3 449 24 H0LiCOW - II. Spectroscopic survey and galaxy-group identification of the strong gravitational lens system HE 0435-1223. SLUSE D., SONNENFELD A., RUMBAUGH N., et al.
2017MNRAS.471.2013A 43           X         1 22 14 Quasar lenses and galactic streams: outlier selection and Gaia multiplet detection. AGNELLO A.
2016A&ARv..24...11T 49           X         1 7 53 Time delay cosmography. TREU T. and MARSHALL P.J.
2016ApJ...832...46M 84             C       1 58 2 Peculiar transverse velocities of galaxies from quasar microlensing. Tentative estimate of the peculiar velocity dispersion at z ∼ 0.5. MEDIAVILLA E., JIMENEZ-VICENTE J., MUNOZ J.A., et al.
2016ApJ...833..194W viz 25     A               1 3427 8 A spectroscopic survey of the fields of 28 strong gravitational lenses: the group catalog. WILSON M.L., ZABLUDOFF A.I., AMMONS S.M., et al.
2016MNRAS.457.4147F 42           X         1 8 2 Gravitational microlensing as a probe for dark matter clumps. FEDOROVA E., SLIUSAR V.M., ZHDANOV V.I., et al.
2015A&A...580A..38R 181       D     X C       4 50 19 H0 from ten well-measured time delay lenses. RATHNA KUMAR S., STALIN C.S. and PRABHU T.P.
2015ApJ...799...48B 16       D               1 20 5 Strongly lensed jets, time delays, and the value of H0. BARNACKA A., GELLER M.J., DELL'ANTONIO I.P., et al.
2015ApJ...799..149J 16       D               1 64 23 Dark matter mass fraction in lens galaxies: new estimates from microlensing. JIMENEZ-VICENTE J., MEDIAVILLA E., KOCHANEK C.S., et al.
2015ApJ...805..161W 16       D               1 31 8 Broad iron emission from gravitationally lensed quasars observed by Chandra. WALTON D.J., REYNOLDS M.T., MILLER J.M., et al.
2015ApJ...806..251J 16       D               2 74 17 Probing the dark matter radial profile in lens galaxies and the size of X-ray emitting region in quasars with microlensing. JIMENEZ-VICENTE J., MEDIAVILLA E., KOCHANEK C.S., et al.
2015ApJS..219...29M viz 181       D     X C       4 10653 13 A spectroscopic survey of the fields of 28 strong gravitational lenses. MOMCHEVA I.G., WILLIAMS K.A., COOL R.J., et al.
2014A&A...571A..60S 42           X         1 5 7 Imprints of the quasar structure in time-delay light curves: Microlensing-aided reverberation mapping. SLUSE D. and TEWES M.
2014ApJ...793...96S 18       D               5 20 40 A calibration of the stellar mass fundamental plane at z ∼ 0.5 using the micro-lensing-induced flux ratio anomalies of macro-lensed quasars. SCHECHTER P.L., POOLEY D., BLACKBURNE J.A., et al.
2014MNRAS.437..600S 16       D               2 40 30 Hubble constant and dark energy inferred from free-form determined time delay distances. SERENO M. and PARAFICZ D.
2014MNRAS.439.2494O 16       D               1 162 55 The stellar and dark matter distributions in elliptical galaxies from the ensemble of strong gravitational lenses. OGURI M., RUSU C.E. and FALCO E.E.
2014MNRAS.442.1090H 301       D     X C       7 16 6 Modelling spikes in quasar accretion disc temperature. HALL P.B., NOORDEH E.S., CHAJET L.S., et al.
2014MNRAS.445.1223V 41           X         1 6 2 The effect of macromodel uncertainties on microlensing modelling of lensed quasars. VERNARDOS G. and FLUKE C.J.
2013A&A...551A.104R viz 24     A   O           1 9 5 Flux and color variations of the doubly imaged quasar UM 673. RICCI D., ELYIV A., FINET F., et al.
2013A&A...553A.121E viz 43           X         1 12 36 COSMOGRAIL: the COSmological MOnitoring. of GRAvItational Lenses. XII. Time delays of the doubly lensed quasars SDSS J1206+4332 and HS 2209+1914. EULAERS E., TEWES M., MAGAIN P., et al.
2013ApJ...764..160G 16       D               1 53 44 Microlensing of quasar broad emission lines: constraints on broad line region size. GUERRAS E., MEDIAVILLA E., JIMENEZ-VICENTE J., et al.
2013ApJ...778..123G 16       D               2 41 9 Microlensing of quasar ultraviolet iron emission. GUERRAS E., MEDIAVILLA E., JIMENEZ-VICENTE J., et al.
2012A&A...538A..99S 477     A D     X   F     12 72 45 COSMOGRAIL: the COSmological MOnitoring of GRAvItational lenses. X. Modeling based on high-precision astrometry of a sample of 25 lensed quasars: consequences for ellipticity, shear, and astrometric anomalies. SLUSE D., CHANTRY V., MAGAIN P., et al.
2012A&A...544A..62S viz 532       D     X         14 47 67 Microlensing of the broad line region in 17 lensed quasars. SLUSE D., HUTSEMEKERS D., COURBIN F., et al.
2012ApJ...744...90B 16       D               1 27 8 A graphics processing unit-enabled, high-resolution cosmological microlensing parameter survey. BATE N.F. and FLUKE C.J.
2012ApJ...744..111P 96       D     X         3 16 39 X-ray and optical flux ratio anomalies in quadruply lensed quasars. II. Mapping the dark matter content in elliptical galaxies. POOLEY D., RAPPAPORT S., BLACKBURNE J.A., et al.
2012ApJ...751..106J 16       D               1 24 43 A robust determination of the size of quasar accretion disks using gravitational microlensing. JIMENEZ-VICENTE J., MEDIAVILLA E., MUNOZ J.A., et al.
2012ApJ...755...31C viz 16       D               2 311 26 Testing the dark energy with gravitational lensing statistics. CAO S., COVONE G. and ZHU Z.-H.
2012MNRAS.420.2944W 95       D         F     2 41 5 The fundamental surface of quad lenses. WOLDESENBET A.G. and WILLIAMS L.L.R.
2012MNRAS.421..971R 40           X         1 19 6 Investigating Mg II absorption in paired quasar sight-lines. ROGERSON J.A. and HALL P.B.
2012MNRAS.427.1867A 40           X         1 21 10 Microlensing evidence for super-Eddington disc accretion in quasars. ABOLMASOV P. and SHAKURA N.I.
2011A&A...528A..42R viz 79             C       1 18 13 Flux and color variations of the quadruply imaged quasar He 0435-1223. RICCI D., POELS J., ELYIV A., et al.
2011ApJ...726...84W 80     A D     X C       2 14 52 The effect of environment on shear in strong gravitational lenses. WONG K.C., KEETON C.R., WILLIAMS K.A., et al.
2011ApJ...729...34B 567       D     X C       14 55 113 Sizes and temperature profiles of quasar accretion disks from chromatic microlensing. BLACKBURNE J.A., POOLEY D., RAPPAPORT S., et al.
2011ApJ...738...96M 16       D               1 90 67 The microlensing properties of a sample of 87 lensed quasars. MOSQUERA A.M. and KOCHANEK C.S.
2011MNRAS.410.2167F 16       D               2 21 35 Galaxy number counts and implications for strong lensing. FASSNACHT C.D., KOOPMANS L.V.E. and WONG K.C.
2010A&A...518A..10V viz 16       D               2 168912 373 A catalogue of quasars and active nuclei: 13th edition. VERON-CETTY M.-P. and VERON P.
2010A&A...522A..95C 195           X         5 52 23 COSMOGRAIL: the COSmological MOnitoring of GRAvItational lenses. VIII. Deconvolution of high resolution near-IR images and simple mass models for 7 gravitationally lensed quasars. CHANTRY V., SLUSE D. and MAGAIN P.
2010ARA&A..48...87T 42           X         1 25 170 Strong lensing by galaxies. TREU T.
2010ApJ...709..552C 1248     A D     X C F     31 105 10 Identifying anomalies in gravitational lens time delays. CONGDON A.B., KEETON C.R. and NORDGREN C.E.
2010ApJ...712.1378P 134       D     X   F     3 20 42 The Hubble constant inferred from 18 time-delay lenses. PARAFICZ D. and HJORTH J.
2010ApJ...716.1579L 16       D               2 48 34 Cosmic evolution of virial and stellar mass in massive early-type galaxies. LAGATTUTA D.J., FASSNACHT C.D., AUGER M.W., et al.
2009A&A...507...35A 39           X         1 21 13 COSMOS 5921+0638: characterization and analysis of a new strong gravitationally lensed AGN. ANGUITA T., FAURE C., KNEIB J.-P., et al.
2009ApJ...706.1451M 93       D         F     2 70 41 Microlensing-based estimate of the mass fraction in compact objects in lens galaxies. MEDIAVILLA E., MUNOZ J.A., FALCO E., et al.
2008A&A...485..403O 131       D     X         4 67 13 Extinction properties of lensing galaxies. OESTMAN L., GOOBAR A. and MOERTSELL E.
2008A&A...488..481V viz 868 T K A     X C       21 26 31 COSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses. VII. Time delays and the Hubble constant from
WFI J2033-4723.
VUISSOZ C., COURBIN F., SLUSE D., et al.
2008ApJ...685..725W 33 9 Lensed image angles: new statistical evidence for substructure. WILLIAMS L.L.R., FOLEY P., FARNSWORTH D., et al.
2008ApJ...689..755M 40           X         1 13 76 X-ray and optical microlensing in the lensed quasar PG 1115+080. MORGAN C.W., KOCHANEK C.S., DAI X., et al.
2007ApJ...661...19P 3 13 101 X-ray and optical flux ratio anomalies in quadruply lensed quasars. I. Zooming in on quasar emission regions. POOLEY D., BLACKBURNE J.A., RAPPAPORT S., et al.
2006A&A...450..461S 28 16 COSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses. IV. Models of prospective time-delay lenses. SAHA P., COURBIN F., SLUSE D., et al.
2006A&A...451..759E 45 42 COSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses. III. Redshift of the lensing galaxy in eight gravitationally lensed quasars. EIGENBROD A., COURBIN F., MEYLAN G., et al.
2006A&A...455..773V viz 108221 545 A catalogue of quasars and active nuclei: 12th edition. VERON-CETTY M.-P. and VERON P.
2006AJ....132..999O viz 1 21 75 The Sloan Digital Sky Survey Quasar Lens Search. I. Candidate selection algorithm. OGURI M., INADA N., PINDOR B., et al.
2006ApJ...641...70O 38   K                 27 27 Spectroscopic redshifts for seven lens galaxies. OFEK E.O., MAOZ D., RIX H.-W., et al.
2005ApJ...635...35K 30 52 Identifying lenses with small-scale structure. II. Fold lenses. KEETON C.R., GAUDI B.S. and PETTERS A.O.
2004AJ....127.2617M 75 T                   31 35 WFI J2026-4536 and
WFI J2033-4723: two new quadruple gravitational lenses.
MORGAN N.D., CALDWELL J.A.R., SCHECHTER P.L., et al.

goto View the references in ADS


2021.04.17-02:34:24

© Université de Strasbourg/CNRS

    • Contact