Cl* NGC 2264 FMS 2-379 , the SIMBAD biblio

2006A&A...455..903F - Astronomy and Astrophysics, volume 455, 903-921 (2006/9-1)

ACIS-I observations of NGC 2264. Membership and X-ray properties of PMS stars.

FLACCOMIO E., MICELA G. and SCIORTINO S.

Abstract (from CDS):

This paper's goal is to improve the member census of the NGC 2264 star-forming region and study the origin of X-ray activity in young PMS stars. We analyze a deep, 100ks long, Chandra ACIS observation covering a 17'x17' field in NGC 2264. The preferential detection in X-rays of low-mass PMS stars gives strong indications of their membership. We study X-ray activity as a function of stellar and circumstellar characteristics by correlating the X-ray luminosities, temperatures, and absorptions with optical and near-infrared data from the literature. We detect 420 X-ray point sources. Optical and NIR counterparts are found in the literature for 85% of the sources. We argue that more than 90% of these counterparts are NGC 2264 members, thereby significantly increasing the known low-mass cluster population by about 100 objects. Among the sources without counterpart, about 50% are probably associated with members, several of which we expect to be previously unknown protostellar objects. With regard to activity we confirm several previous findings: X-ray luminosity is related to stellar mass, although with a large scatter; LX/Lbol is close to, but almost invariably below, the saturation level, 10–3, especially when considering the quiescent X-ray emission. A comparison between CTTS and WTTS shows several differences: CTTS have, at any given mass, activity levels that are both lower and more scattered than WTTS; emission from CTTS may also be more time variable and is on average slightly harder than for WTTS. However, we find evidence in some CTTS of extremely cool, ∼0.1-0.2keV, plasma which we speculate is heated by accretion shocks. Activity in low-mass PMS stars, while generally similar to that of saturated MS stars, may be significantly affected by mass accretion in several ways: accretion is probably responsible for very soft X-ray emission directly produced in the accretion shock; it may reduce the average energy output of solar-like coronae, at the same time making them hotter and more dynamic. We briefly speculate on a physical scenario that can explain these observations.

Abstract Copyright:

Journal keyword(s): stars: activity - stars: coronae - stars: pre-main sequence - open clusters and associations: individual: NGC 2264 - X-rays: stars

VizieR on-line data: <Available at CDS (J/A+A/455/903): table1.dat table3.dat table4.dat table6.dat>

Nomenclature: Table 1: [FMS2006] NNN (Nos 1-420). Table 3: Cl* NGC 2264 FMS 2-NNNN (Nos 2-1 to 2-1598).

Simbad objects: 1178

goto View the references in ADS