KOI-701.04 , the SIMBAD biblio

KOI-701.04 , the SIMBAD biblio (79 results) C.D.S. - SIMBAD4 rel 1.8 - 2024.04.25CEST16:40:27


Sort references on where and how often the object is cited
trying to find the most relevant references on this object.
More on score
Bibcode/DOI Score in Title|Abstract|
Keywords
in a table in teXt, Caption, ... Nb occurence Nb objects in ref Citations
(from ADS)
Title First 3 Authors
2013Sci...340..587B 15 6 182 Kepler-62: A five-planet system with planets of 1.4 and 1.6 Earth radii in the habitable zone. BORUCKI W.J., AGOL E., FRESSIN F., et al.
2013ApJ...773...98B 39           X         1 49 29 Exoplanet characterization by proxy: a transiting 2.15 RPlanet near the habitable zone of the late K dwarf Kepler-61. BALLARD S., CHARBONNEAU D., FRESSIN F., et al.
2013ApJ...775L..47K 843 T K A     X C       20 11 39 Water-planets in the habitable zone: atmospheric chemistry, observable features, and the case of Kepler-62e and -62f. KALTENEGGER L., SASSELOV D. and RUGHEIMER S.
2013ApJ...778..109Z 41           X         1 19 104 Toward the minimum inner edge distance of the habitable zone. ZSOM A., SEAGER S., DE WIT J., et al.
2014MNRAS.437.1352F 39           X         1 16 16 Assessing circumbinary habitable zones using latitudinal energy balance modelling. FORGAN D.
2014ApJ...784...45R viz 16       D               1 1691 388 Validation of Kepler's multiple planet candidates. III. Light curve analysis and announcement of hundreds of new multi-planet systems. ROWE J.F., BRYSON S.T., MARCY G.W., et al.
2014MNRAS.439.3225L 83           X         2 8 72 Origin and loss of nebula-captured hydrogen envelopes from `sub'- to `super-Earths' in the habitable zone of Sun-like stars. LAMMER H., STOKL A., ERKAEV N.V., et al.
2014ApJ...791..114W 16       D               1 31 46 GJ 832c: a super-earth in the habitable zone. WITTENMYER R.A., TUOMI M., BUTLER R.P., et al.
2014A&A...567A..54R 39           X         1 8 11 Diversity of planetary systems in low-mass disks. Terrestrial-type planet formation and water delivery. RONCO M.P. and DE ELIA G.C.
2014Natur.513..336L 1 20 49 Advances in exoplanet science from Kepler. LISSAUER J.J., DAWSON R.I. and TREMAINE S.
2014A&A...572A..51F 16       D               1 111 15 Revisiting the correlation between stellar activity and planetary surface gravity. FIGUEIRA P., OSHAGH M., ADIBEKYAN V.Z., et al.
2015ApJS..217...16R viz 16       D               2 8625 149 Planetary candidates observed by Kepler. V. Planet sample from Q1-Q12 (36 months). ROWE J.F., COUGHLIN J.L., ANTOCI V., et al.
2015ApJS..217...31M viz 56       D     X         2 2033 213 Planetary candidates observed by Kepler. VI. Planet sample from Q1–Q16 (47 months). MULLALLY F., COUGHLIN J.L., THOMPSON S.E., et al.
2015ApJ...809....8B viz 16       D               1 112329 282 Terrestrial planet occurrence rates for the Kepler GK dwarf sample. BURKE C.J., CHRISTIANSEN J.L., MULLALLY F., et al.
2015A&A...583A.116B viz 257       D     X         7 8 53 Mercury-T: A new code to study tidally evolving multi-planet systems. Applications to Kepler-62. BOLMONT E., RAYMOND S.N., LECONTE J., et al.
2015ApJ...814...91B viz 532       D     X C       13 524 24 Comparative habitability of transiting exoplanets. BARNES R., MEADOWS V.S. and EVANS N.
2016MNRAS.457.1089M 859       D     X C F     20 20 3 Orbital dynamics of exoplanetary systems Kepler-62, HD 200964 and Kepler-11. MIA R. and KUSHVAH B.S.
2016ApJS..224...12C viz 16       D               1 1110 211 Planetary candidates observed by Kepler VII. The first fully uniform catalog based on the entire 48-month data set (Q1-Q17 DR24). COUGHLIN J.L., MULLALLY F., THOMPSON S.E., et al.
2016ApJ...825...19W viz 18       D               1 99 221 Probabilistic mass-radius relationship for sub-Neptune-sized planets. WOLFGANG A., ROGERS L.A. and FORD E.B.
2016A&A...591A.106B 42           X         1 12 30 Habitability of planets on eccentric orbits: Limits of the mean flux approximation. BOLMONT E., LIBERT A.-S., LECONTE J., et al.
2016MNRAS.458.3752L 40           X         1 5 1 Effective stellar flux calculations for limits of life-supporting zones of exoplanets. LUDWIG W., EGGL S., NEUBAUER D., et al.
2016ApJ...825...86S 43           X         1 3 10 Dynamical accretion of primordial atmospheres around planets with masses between 0.1 and 5 M ⊕ in the habitable zone. STOKL A., DORFI E.A., JOHNSTONE C.P., et al.
2016MNRAS.461.3927H 739       D     X C F     17 20 8 Lightning climatology of exoplanets and brown dwarfs guided by Solar system data. HODOSAN G., HELLING C., ASENSIO-TORRES R., et al.
2016ApJ...830....1K 20       D               4 30 122 A catalog of Kepler habitable zone exoplanet candidates. KANE S.R., HILL M.L., KASTING J.F., et al.
2016AJ....152..158T viz 16       D               1 4387 37 Detection of potential transit signals in 17 quarters of Kepler data: results of the final Kepler mission transiting planet search (DR25). TWICKEN J.D., JENKINS J.M., SEADER S.E., et al.
2016AJ....152..181H viz 16       D               1 9279 22 SETI observations of exoplanets with the Allen Telescope Array. HARP G.R., RICHARDS J., TARTER J.C., et al.
2017AJ....153..162A 81             C       1 6 3 Kepler-1649b: an exo-Venus in the solar neighborhood. ANGELO I., ROWE J.F., HOWELL S.B., et al.
2017ApJ...838...24L 44           X         1 2 7 The abundance of atmospheric CO2 in ocean exoplanets: a novel CO2 deposition mechanism. LEVI A., SASSELOV D. and PODOLAK M.
2017MNRAS.464.3728B 53           X         1 13 161 Water loss from terrestrial planets orbiting ultracool dwarfs: implications for the planets of TRAPPIST-1. BOLMONT E., SELSIS F., OWEN J.E., et al.
2017AJ....154..108J viz 16       D               1 3237 137 The California-Kepler Survey. II. Precise physical properties of 2025 Kepler planets and their host stars. JOHNSON J.A., PETIGURA E.A., FULTON B.J., et al.
2017ApJ...846L..21L 42           X         1 8 8 Reduced diversity of life around Proxima Centauri and TRAPPIST-1. LINGAM M. and LOEB A.
2017ApJ...847L...4D 44           X         1 7 26 The dehydration of water worlds via atmospheric losses. DONG C., HUANG Z., LINGAM M., et al.
2018AJ....155...48W viz 16       D               1 911 204 The California-Kepler survey. V. Peas in a pod: planets in a Kepler multi-planet system are similar in size and regularly spaced. WEISS L.M., MARCY G.W., PETIGURA E.A., et al.
2017MNRAS.471.4628R 16       D               1 28 10 Statistical-likelihood Exo-Planetary Habitability Index (SEPHI). RODRIGUEZ-MOZOS J.M. and MOYA A.
2018AJ....155...60D 864     A D S   X C       20 10 9 Exo-Milankovitch cycles. I. Orbits and rotation states. DEITRICK R., BARNES R., QUINN T.R., et al.
2018AJ....155..161Z viz 140       D     X         4 1274 24 Robo-AO Kepler survey. IV. The effect of nearby stars on 3857 planetary candidate systems. ZIEGLER C., LAW N.M., BARANEC C., et al.
2018ApJS..235...38T viz 181       D     X         5 327 292 Planetary candidates observed by Kepler. VIII. A fully automated catalog with measured completeness and reliability based on Data Release 25. THOMPSON S.E., COUGHLIN J.L., HOFFMAN K., et al.
2018PASP..130f4502T 234       D     X C       5 15 193 Kepler Data Validation I-architecture, diagnostic tests, and data products for vetting Transiting planet candidates. TWICKEN J.D., CATANZARITE J.H., CLARKE B.D., et al.
2018AJ....155..237S 3046 T   A D     X C       73 12 7 Obliquity variations of habitable zone planets
Kepler-62f and Kepler-186f.
SHAN Y. and LI G.
2018AJ....155..266D 48           X         1 1 7 Exo-Milankovitch cycles. II. Climates of G-dwarf planets in dynamically hot systems. DEITRICK R., BARNES R., BITZ C., et al.
2018MNRAS.477.4627R 82             C       1 7 3 The ice cap zone: a unique habitable zone for ocean worlds. RAMIREZ R.M. and LEVI A.
2018ApJ...866...99B viz 99       D     X         3 7129 233 Revised radii of Kepler stars and planet's using Gaia Data Release 2. BERGER T.A., HUBER D., GAIDOS E., et al.
2018AJ....156..254W viz 16       D               2 1269 42 The California-Kepler Survey. VI. Kepler multis and singles have similar planet and stellar properties indicating a common origin. WEISS L.M., ISAACSON H.T., MARCY G.W., et al.
2018AJ....156..264F viz 16       D               1 1909 365 The California-Kepler Survey. VII. Precise planet radii leveraging Gaia DR2 reveal the stellar mass dependence of the Planet radius gap. FULTON B.J. and PETIGURA E.A.
2019A&A...623A...4S 84           X         2 102 3 Secular spin-axis dynamics of exoplanets. SAILLENFEST M., LASKAR J. and BOUE G.
2019AJ....157..143B viz 209           X         5 423 5 Re-evaluating small long-period confirmed planets from Kepler. BURKE C.J., MULLALLY F., THOMPSON S.E., et al.
2019AJ....157..171K viz 17       D               1 4069 2 Visual analysis and demographics of Kepler transit timing variations. KANE M., RAGOZZINE D., FLOWERS X., et al.
2019ApJ...878...19S 44           X         1 4 8 A limited habitable zone for complex life. SCHWIETERMAN E.W., REINHARD C.T., OLSON S.L., et al.
2019ApJS..243...30S 125           X C       2 10 ~ The climates of other worlds: a review of the emerging field of exoplanet climatology. SHIELDS A.L.
2019A&A...630A..52R 184       D     X         5 63 ~ Erosion of an exoplanetary atmosphere caused by stellar winds. RODRIGUEZ-MOZOS J.M. and MOYA A.
2019ApJ...886...56Q 42           X         1 8 ~ Obliquity evolution of circumstellar planets in Sun-like stellar binaries. QUARLES B., LI G. and LISSAUER J.J.
2020AJ....159...55T 315       D     X C       7 5 ~ A flexible bayesian framework for assessing habitability with joint observational and model constraints. TRUITT A.R., YOUNG P.A., WALKER S.I., et al.
2020MNRAS.492L..28A 17       D               4 15 ~ Stellar Proton Event-induced surface radiation dose as a constraint on the habitability of terrestrial exoplanets. ATRI D.
2020AJ....159..124K viz 43           X         1 131 ~ Searching the entirety of Kepler data. I. 17 new planet candidates including one Habitable Zone world. KUNIMOTO M., MATTHEWS J.M. and NGO H.
2020ApJ...893..140G 43           X         1 5 ~ The impact of planetary rotation rate on the reflectance and thermal emission spectrum of terrestrial exoplanets around sunlike stars. GUZEWICH S.D., LUSTIG-YAEGER J., DAVIS C.E., et al.
2020AJ....159..239G viz 17       D               1 1408 ~ Updated parameters and a new transmission spectrum of HD 97658b. GUO X., CROSSFIELD I.J.M., DRAGOMIR D., et al.
2020AJ....159..248K 62       D     X         2 26 62 Searching the entirety of Kepler data. II. Occurrence rate estimates for FGK stars. KUNIMOTO M. and MATTHEWS J.M.
2020AJ....160..108B viz 102       D     X         3 6855 109 The Gaia-Kepler stellar properties catalog. II. Planet radius demographics as a function of stellar mass and age. BERGER T.A., HUBER D., GAIDOS E., et al.
2020AJ....160..116G 87               F     1 34 78 The first habitable-zone Earth-sized planet from TESS. I. Validation of the TOI-700 system. GILBERT E.A., BARCLAY T., SCHLIEDER J.E., et al.
2020AJ....160..117R 44           X         1 19 32 The first habitable-zone Earth-sized planet from TESS. II. Spitzer confirms TOI-700 d. RODRIGUEZ J.E., VANDERBURG A., ZIEBA S., et al.
2020MNRAS.498.5166P 85             C       1 25 ~ On the origin of the eccentricity dichotomy displayed by compact super-Earths: dynamical heating by cold giants. POON S.T.S. and NELSON R.P.
2020A&A...642A..49D 85               F     1 56 48 A super-Earth and a sub-Neptune orbiting the bright, quiet M3 dwarf TOI-1266. DEMORY B.-O., POZUELOS F.J., GOMEZ MAQUEO CHEW Y., et al.
2021MNRAS.505.3329C 235       D     X   F     5 19 ~ Efficiency of the oxygenic photosynthesis on Earth-like planets in the habitable zone. COVONE G., IENCO R.M., CACCIAPUOTI L., et al.
2021ApJ...915L...2L 44           X         1 2 ~ Tilting planet's during planet scattering. LI G.
2022AJ....163..128W viz 18       D               1 1570 6 The influence of 10 unique chemical elements in shaping the distribution of Kepler planets. WILSON R.F., CANAS C.I., MAJEWSKI S.R., et al.
2022ApJ...929..143W 108       D       C       3 19 1 Continuous Habitable Zones: Using Bayesian Methods to Prioritize Characterization of Potentially Habitable Worlds. WARE A., YOUNG P., TRUITT A., et al.
2022MNRAS.513.5290D 224     A D     X   F     5 97 2 A target list for searching for habitable exomoons. DOBOS V., HARIS A., KAMP I.E.E., et al.
2022RAA....22g2003J 114 7 CHES: A Space-borne Astrometric Mission for the Detection of Habitable Planets of the Nearby Solar-type Stars. JI J.-H., LI H.-T., ZHANG J.-B., et al.
2022MNRAS.515.5175C 45           X         1 12 ~ Low spin-axis variations of circumbinary planets. CHEN R., LI G. and TAO M.
2022AJ....164..130V 48           X         1 1 3 System Architecture and Planetary Obliquity: Implications for Long-term Habitability. VERVOORT P., HORNER J., KANE S.R., et al.
2023AJ....165..173T 19       D               2 20 ~ Tidal Heating of Exomoons in Resonance and Implications for Detection. TOKADJIAN A. and PIRO A.L.
2023ApJ...948L..26H 93     A D     X         3 34 1 A New Definition of Exoplanet Habitability: Introducing the Photosynthetic Habitable Zone. HALL C., STANCIL P.C., TERRY J.P., et al.
2023MNRAS.522.1411S 19       D               1 40 ~ The ultraviolet habitable zone of exoplanets. SPINELLI R., BORSA F., GHIRLANDA G., et al.
2023MNRAS.520..761H 187           X C       3 7 ~ Consequences of dynamically unstable moons in extrasolar systems. HANSEN B.M.S.
2023ApJ...956...29Q 205       D     X         5 40 ~ Prospects for Cryovolcanic Activity on Cold Ocean Planets. QUICK L.C., ROBERGE A., MENDOZA G.T., et al.
2024ApJS..270....8W 20       D               1 246 ~ The Kepler Giant Planet Search. I. A Decade of Kepler Planet-host Radial Velocities from W. M. Keck Observatory. WEISS L.M., ISAACSON H., HOWARD A.W., et al.
2024AJ....167...68M 970       D     X C       19 21 ~ Gaussian Processes and Nested Sampling Applied to Kepler's Small Long-period Exoplanet Candidates. MATESIC M.R.B., ROWE J.F., LIVINGSTON J.H., et al.
2024A&A...681A.109B 350     A D     X   F     7 33 ~ Water content of rocky exoplanets in the habitable zone. BOLDOG A., DOBOS V., KISS L.L., et al.
2024ApJ...964L..13S 100           X         2 25 ~ Predicting the Dominant Formation Mechanism of Multiplanetary Systems. SHARIAT C., HASEGAWA Y., HANSEN B.M.S., et al.

goto View the references in ADS