Kepler-79 , the SIMBAD biblio

Kepler-79 , the SIMBAD biblio (119 results) C.D.S. - SIMBAD4 rel 1.8 - 2024.04.25CEST12:20:07


Sort references on where and how often the object is cited
trying to find the most relevant references on this object.
More on score
Bibcode/DOI Score in Title|Abstract|
Keywords
in a table in teXt, Caption, ... Nb occurence Nb objects in ref Citations
(from ADS)
Title First 3 Authors
2010AstL...36..338F viz 15       D               1 1150 6 Proper motions and CCD photometry of stars in the region of the open cluster NGC 6866. FROLOV V.N., ANANJEVSKAJA Y.K., GORSHANOV D.L., et al.
2010ApJ...725.1226S 779   K   D     X C       20 22 70 Five Kepler target stars that show multiple transiting exoplanet candidates. STEFFEN J.H., BATALHA N.M., BORUCKI W.J., et al.
2011ApJ...728..117B viz 92       D     X C       2 321 310 Characteristics of Kepler planetary candidates based on the first data set. BORUCKI W.J., KOCH D.G., BASRI G., et al.
2011ApJ...730...93W 15       D               1 59 37 The california planet survey. III. A possible 2:1 resonance in the exoplanetary triple system HD 37124. WRIGHT J.T., VERAS D., FORD E.B., et al.
2011ApJ...736...19B viz 15       D               1 1507 867 Characteristics of planetary candidates observed by Kepler. II. Analysis of the first four months of data. BORUCKI W.J., KOCH D.G., BASRI G., et al.
2011ApJ...738..170M viz 15       D               3 997 230 On the low false positive probabilities of Kepler planet candidates. MORTON T.D. and JOHNSON J.A.
2011ApJS..197....2F viz 15       D               3 980 66 Transit timing observations from Kepler. I. Statistical analysis of the first four months. FORD E.B., ROWE J.F., FABRYCKY D.C., et al.
2011ApJS..197....8L viz 16       D               2 177 608 Architecture and dynamics of Kepler's candidate multiple transiting planet systems. LISSAUER J.J., RAGOZZINE D., FABRYCKY D.C., et al.
2012ApJS..199...24T viz 15       D               1 5394 66 Detection of potential transit signals in the first three quarters of Kepler mission data. TENENBAUM P., CHRISTIANSEN J.L., JENKINS J.M., et al.
2012ApJ...753..170W 2206 T K A D S   X C       55 9 26 Predicting the configuration of a planetary system:
KOI-152 observed by Kepler.
WANG S., JI J. and ZHOU J.-L.
2012ApJ...756..185F viz 15       D               3 1856 44 Transit timing observations from Kepler. V. Transit timing variation candidates in the first sixteen months from polynomial models. FORD E.B., RAGOZZINE D., ROWE J.F., et al.
2012ApJ...756..186S viz 15       D               3 811 35 Transit timing observations from Kepler. VI. Potentially interesting candidate systems from fourier-based statistical tests. STEFFEN J.H., FORD E.B., ROWE J.F., et al.
2013ApJ...763...41C viz 16       D               3 97 40 On the relative sizes of planets within Kepler multiple-candidate systems. CIARDI D.R., FABRYCKY D.C., FORD E.B., et al.
2013ApJ...772...74W 157           X C       3 59 175 Density and eccentricity of Kepler planets. WU Y. and LITHWICK Y.
2013MNRAS.433..928M 78           X         2 10 19 Dynamical analysis of the Gliese-876 Laplace resonance. MARTI J.G., GIUPPONE C.A. and BEAUGE C.
2013ApJ...774L..12S viz 16       D               1 469 25 A lack of short-period multiplanet systems with close-proximity pairs and the curious case of Kepler-42. STEFFEN J.H. and FARR W.M.
2013ApJ...775L..11M viz 16       D               1 2010 189 Stellar rotation periods of the Kepler Objects of Interest: a dearth of close-in planets around fast rotators. McQUILLAN A., MAZEH T. and AIGRAIN S.
2013ApJS..208...16M viz 16       D               3 1518 139 Transit timing observations from Kepler. VIII. Catalog of transit timing measurements of the first twelve quarters. MAZEH T., NACHMANI G., HOLCZER T., et al.
2013ApJS..208...22X viz 156       S   X         3 29 51 Transit timing variation of near-resonance planetary pairs: confirmation of 12 multiple-planet systems. XIE J.-W.
2013MNRAS.435.1126B 16       D               1 72 20 Exoplanet predictions based on the generalized Titius-Bode relation. BOVAIRD T. and LINEWEAVER C.H.
2014ApJ...781...18C 40           X         1 19 59 The planetary system to KIC 11442793: a compact analogue to the solar system. CABRERA J., CSIZMADIA Sz., LEHMANN H., et al.
2014ApJS..210...19B viz 16       D               4 5860 211 Planetary candidates observed by Kepler IV: planet sample from Q1-Q8 (22 months). BURKE C.J., BRYSON S.T., MULLALLY F., et al.
2014ApJ...783L...6W 82           X         2 66 499 The mass-radius relation for 65 exoplanets smaller than 4 earth radii. WEISS L.M. and MARCY G.W.
2014ApJ...783...53M 43           X         1 14 122 Very low density planets around Kepler-51 revealed with transit timing variations and an anomaly similar to a planet-planet eclipse event. MASUDA K.
2014ApJ...783..123C viz 16       D               1 221 18 Limits on surface gravities of Kepler planet-candidate host stars from non-detection of solar-like oscillations. CAMPANTE T.L., CHAPLIN W.J., LUND M.N., et al.
2014ApJ...784...44L 158           X C       3 47 179 Validation of Kepler's multiple planet candidates. II. Refined statistical framework and descriptions of systems of special interest. LISSAUER J.J., MARCY G.W., BRYSON S.T., et al.
2014ApJ...784...45R viz 16       D               1 1691 388 Validation of Kepler's multiple planet candidates. III. Light curve analysis and announcement of hundreds of new multi-planet systems. ROWE J.F., BRYSON S.T., MARCY G.W., et al.
2014ApJ...785...15J viz 1834 T K A S   X C       44 33 105 Kepler-79's low density planets. JONTOF-HUTTER D., LISSAUER J.J., ROWE J.F., et al.
2014AJ....147..119C viz 16       D               1 8010 91 Contamination in the Kepler field. Identification of 685 KOIs as false positives via ephemeris matching based on Q1-Q12 data. COUGHLIN J.L., THOMPSON S.E., BRYSON S.T., et al.
2014ApJ...787...80H viz 16       D               2 261 190 Densities and eccentricities of 139 Kepler planets from transit time variations. HADDEN S. and LITHWICK Y.
2014A&A...566A.103L viz 16       D               7 359 102 High-resolution imaging of Kepler planet host candidates. A comprehensive comparison of different techniques. LILLO-BOX J., BARRADO D. and BOUY H.
2014ApJ...795...85W 40           X         1 6 20 Near 3:2 and 2:1 mean motion resonance formation in the systems observed by Kepler. WANG S. and JI J.
2014ApJ...795..167S viz 118           X C       2 30 33 Planet hunters. VII. Discovery of a new low-mass, low-density planet (PH3 c) orbiting Kepler-289 with mass measurements of two additional planets (PH3 b and d). SCHMITT J.R., AGOL E., DECK K.M., et al.
2015ApJ...801....3M viz 16       D               1 3357 109 Photometric amplitude distribution of stellar rotation of KOIs–Indication for spin-orbit alignment of cool stars and high obliquity for hot stars. MAZEH T., PERETS H.B., McQUILLAN A., et al.
2015ApJS..217...16R viz 16       D               1 8625 149 Planetary candidates observed by Kepler. V. Planet sample from Q1-Q12 (36 months). ROWE J.F., COUGHLIN J.L., ANTOCI V., et al.
2015MNRAS.448.1956S 40           X         1 84 51 The period ratio distribution of Kepler's candidate multiplanet systems. STEFFEN J.H. and HWANG J.A.
2015MNRAS.448.3608B viz 16       D               2 156 6 Using the inclinations of Kepler systems to prioritize new Titius-Bode-based exoplanet predictions. BOVAIRD T., LINEWEAVER C.H. and JACOBSEN S.K.
2015AJ....149..167B 41           X         1 9 19 Dynamical evolution of multi-resonant systems: the case of GJ876. BATYGIN K., DECK K.M. and HOLMAN M.J.
2015ApJ...806..248W viz 16       D               1 143 44 Influence of stellar multiplicity on planet formation. III. Adaptive optics imaging of Kepler stars with gas giant planets. WANG J., FISCHER D.A., HORCH E.P., et al.
2015ApJ...807..170H viz 16       D               4 2117 10 Time variation of Kepler transits induced by stellar Spots–A way to distinguish between prograde and retrograde motion. II. Application to KOIs. HOLCZER T., SHPORER A., MAZEH T., et al.
2015MNRAS.451.2589B 90             C       1 3 66 Capture of planets into mean-motion resonances and the origins of extrasolar orbital architectures. BATYGIN K.
2015ApJ...813..100O viz 16       D               1 327 7 Deep GALEX UV survey of the Kepler field. I. Point source catalog. OLMEDO M., LLOYD J., MAMAJEK E.E., et al.
2015MNRAS.453.4089S 16       D               1 103 3 Tides alone cannot explain Kepler planets close to 2:1 MMR. SILBURT A. and REIN H.
2015ApJ...814..130M viz 16       D               4 2846 162 An increase in the mass of planetary systems around lower-mass stars. MULDERS G.D., PASCUCCI I. and APAI D.
2016ApJ...817...90L 131           X         3 19 212 Breeding super-earths and birthing super-puffs in transitional disks. LEE E.J. and CHIANG E.
2016ApJ...817..107O 59           X         1 7 136 Atmospheres of low-mass planets: the "Boil-off". OWEN J.E. and WU Y.
2016MNRAS.455.2980B 16       D               4 52 19 Oscillations of relative inclination angles in compact extrasolar planetary systems. BECKER J.C. and ADAMS F.C.
2016ApJ...819...83W 82           X         2 23 55 Revised masses and densities of the planets around Kepler-10. WEISS L.M., ROGERS L.A., ISAACSON H.T., et al.
2016ApJ...820...39J 81           X         2 107 126 Secure mass measurements from transit timing: 10 Kepler exoplanets between 3 and 8 M with diverse densities and incident fluxes. JONTOF-HUTTER D., FORD E.B., ROWE J.F., et al.
2016ApJ...821...47B viz 16       D               1 217 14 Efficient geometric probabilities of multi-transiting exoplanetary systems from CORBITS. BRAKENSIEK J. and RAGOZZINE D.
2016ApJ...822...86M viz 16       D               1 6130 337 False positive probabilities for all Kepler objects of interest: 1284 newly validated planets and 428 likely false positives. MORTON T.D., BRYSON S.T., COUGHLIN J.L., et al.
2016MNRAS.457.2273O 137       D     X C       3 23 28 Single transit candidates from K2: detection and period estimation. OSBORN H.P., ARMSTRONG D.J., BROWN D.J.A., et al.
2016AJ....152....8K viz 16       D               1 389 203 The impact of stellar multiplicity on planetary systems. I. The ruinous influence of close binary companions. KRAUS A.L., IRELAND M.J., HUBER D., et al.
2016ApJS..225....9H viz 16       D               11 2132 124 Transit timing observations from Kepler. IX. Catalog of the full long-cadence data set. HOLCZER T., MAZEH T., NACHMANI G., et al.
2016ApJ...829..114B 102             C       1 9 200 In situ formation and dynamical evolution of hot Jupiter systems. BATYGIN K., BODENHEIMER P.H. and LAUGHLIN G.P.
2017AJ....153...71F viz 16       D               1 3575 164 The Kepler follow-up observation program. I. A catalog of companions to Kepler stars from high-resolution imaging. FURLAN E., CIARDI D.R., EVERETT M.E., et al.
2017AJ....153..120B 83             C       1 4 8 An analytic criterion for turbulent disruption of planetary resonances. BATYGIN K. and ADAMS F.C.
2017AJ....153..180S 16       D               2 119 3 A search for lost planets in the Kepler multi-planet systems and the discovery of the long-period, Neptune-sized exoplanet Kepler-150 f. SCHMITT J.R., JENKINS J.M. and FISCHER D.A.
2017MNRAS.466.1868C viz 41           X         1 176 21 An overabundance of low-density Neptune-like planets. CUBILLOS P., ERKAEV N.V., JUVAN I., et al.
2017MNRAS.465.2634A viz 16       D               4 5400 21 Transit shapes and self-organizing maps as a tool for ranking planetary candidates: application to Kepler and K2. ARMSTRONG D.J., POLLACCO D. and SANTERNE A.
2017A&A...602A.101R 81           X         2 69 10 Planetary migration and the origin of the 2:1 and 3:2 (near)-resonant population of close-in exoplanets. RAMOS X.S., CHARALAMBOUS C., BENITEZ-LLAMBAY P., et al.
2017MNRAS.467..619S 81           X         2 10 6 Terrestrial planet formation under migration: systems near the 4:2:1 mean motion resonance. SUN Z., JI J., WANG S., et al.
2017AJ....154....5H viz 81           X         2 231 145 Kepler planet masses and eccentricities from TTV analysis. HADDEN S. and LITHWICK Y.
2017AJ....154...66F 41           X         1 90 6 The densities of planets in multiple stellar systems. FURLAN E. and HOWELL S.B.
2017AJ....154..107P viz 16       D               1 1306 226 The California-Kepler Survey. I. High-resolution spectroscopy of 1305 stars hosting Kepler transiting planets. PETIGURA E.A., HOWARD A.W., MARCY G.W., et al.
2017AJ....154..108J viz 16       D               1 3237 137 The California-Kepler Survey. II. Precise physical properties of 2025 Kepler planets and their host stars. JOHNSON J.A., PETIGURA E.A., FULTON B.J., et al.
2017A&A...605A..72L viz 97       D       C       5 130 88 AMD-stability and the classification of planetary systems. LASKAR J. and PETIT A.C.
2017NewA...55....1H 16       D               1 146 2 Multiple planetary systems: properties of the current sample. HOBSON M.J. and GOMEZ M.
2017AJ....154..236W 41           X         1 34 7 Near mean-motion resonances in the system observed by Kepler: affected by mass accretion and Type I migration. WANG S. and JI J.
2018ApJS..234....9O viz 16       D               4 436 14 A spectral approach to transit timing variations. OFIR A., XIE J.-W., JIANG C.-F., et al.
2018AJ....155...57C 124           X         3 34 51 The K2-138 system: a near-resonant chain of five sub-Neptune planets discovered by citizen scientists. CHRISTIANSEN J.L., CROSSFIELD I.J.M., BARENTSEN G., et al.
2018ApJ...855..115B viz 16       D               1 1305 5 Identifying young Kepler planet host stars from Keck-HIRES spectra of lithium. BERGER T.A., HOWARD A.W. and BOESGAARD A.M.
2018MNRAS.474.2094A viz 16       D               1 1073 143 Inferring probabilistic stellar rotation periods using Gaussian processes. ANGUS R., MORTON T., AIGRAIN S., et al.
2018AJ....155..161Z viz 41           X         1 1274 24 Robo-AO Kepler survey. IV. The effect of nearby stars on 3857 planetary candidate systems. ZIEGLER C., LAW N.M., BARANEC C., et al.
2018AJ....155..167S 16       D               1 13 2 The resilience of Kepler systems to stellar obliquity. SPALDING C., MARX N.W. and BATYGIN K.
2018MNRAS.478.2480P 123           X         3 27 5 The architecture and formation of the Kepler-30 planetary system. PANICHI F., GOZDZIEWSKI K., MIGASZEWSKI C., et al.
2018ApJ...861..149F viz 16       D               1 2261 6 The Kepler Follow-up Observation Program. II. Stellar parameters from medium- and high-resolution spectroscopy. FURLAN E., CIARDI D.R., COCHRAN W.D., et al.
2018ApJS..237...38B viz 16       D               2 1111 42 Spectral properties of cool stars: extended abundance analysis of Kepler Objects of Interest. BREWER J.M. and FISCHER D.A.
2018ApJ...866...99B viz 16       D               1 7129 233 Revised radii of Kepler stars and planet's using Gaia Data Release 2. BERGER T.A., HUBER D., GAIDOS E., et al.
2018AJ....156..292T viz 16       D               1 647 8 The effects of stellar companions on the observed transiting exoplanet radius distribution. TESKE J.K., CIARDI D.R., HOWELL S.B., et al.
2019ApJ...873L...1W 46           X         1 10 49 Dusty outflows in planetary atmospheres: understanding "super-puffs" and transmission spectra of sub-Neptunes. WANG L. and DAI F.
2019A&A...623A.104H 42           X         1 20 1 SOPHIE velocimetry of Kepler transit candidates. XIX. The transiting temperate giant planet KOI-3680b. HEBRARD G., BONOMO A.S., DIAZ R.F., et al.
2019ApJ...875...29M viz 17       D               1 2918 72 A spectroscopic analysis of the California-Kepler Survey sample. I. Stellar parameters, planetary radii, and a slope in the radius gap. MARTINEZ C.F., CUNHA K., GHEZZI L., et al.
2019A&A...631A.152A 17       D               2 121 ~ Dusty phenomena in the vicinity of giant exoplanets. ARKHYPOV O.V., KHODACHENKO M.L. and HANSLMEIER A.
2019ApJ...886...72M 504       S   X C       10 17 38 Tidally induced radius inflation of sub-Neptunes. MILLHOLLAND S.
2020ApJ...890...23L viz 17       D               4 4935 35 Current population statistics do not favor photoevaporation over core-powered mass loss as the dominant cause of the exoplanet radius gap. LOYD R.O.P., SHKOLNIK E.L., SCHNEIDER A.C., et al.
2020ApJ...893L...1W 85               F     1 51 33 The Kepler peas in a pod pattern is astrophysical. WEISS L.M. and PETIGURA E.A.
2020AJ....159..194V viz 17       D               2 288 ~ A statistical search for star-planet interaction in the ultraviolet using GALEX. VISWANATH G., NARANG M., MANOJ P., et al.
2020AJ....159..207B 17       D               1 150 ~ Transit duration variations in multiplanet systems. BOLEY A.C., VAN LAERHOVEN C. and GRANADOS CONTRERAS A.P.
2020A&A...636A..53T 17       D               1 12 ~ Normalized angular momentum deficit: a tool for comparing the violence of the dynamical histories of planetary systems. TURRINI D., ZINZI A. and BELINCHON J.A.
2020AJ....160..108B viz 17       D               4 6855 109 The Gaia-Kepler stellar properties catalog. II. Planet radius demographics as a function of stellar mass and age. BERGER T.A., HUBER D., GAIDOS E., et al.
2020AJ....160..201C viz 1107           X C       25 31 22 A featureless infrared transmission spectrum for the super-puff planet Kepler-79d. CHACHAN Y., JONTOF-HUTTER D., KNUTSON H.A., et al.
2021AJ....161...68L viz 17       D               2 253 24 Hot stars with Kepler planets have high obliquities. LOUDEN E.M., WINN J.N., PETIGURA E.A., et al.
2021AJ....161...77W 44           X         1 11 ~ Departure from the exact location of mean motion resonances induced by the gas disk in systems observed by Kepler. WANG S., LIN D.N.C., ZHENG X., et al.
2021ApJ...908..114Y 461     A S   X C       9 16 9 A simplified photodynamical model for planetary mass determination in low-eccentricity multitransiting systems. YOFFE G., OFIR A. and AHARONSON O.
2021ApJ...909..115C viz 17       D               1 2175 13 Planets Across Space and Time (PAST). I. Characterizing the memberships of Galactic components and stellar ages: revisiting the kinematic methods and applying to planet host stars. CHEN D.-C., XIE J.-W., ZHOU J.-L., et al.
2020PASJ...72...24L 17       D               1 90 ~ The reliability of the Titius-Bode relation and its implications for the search for exoplanets. LARA P., CORDERO-TERCERO G. and ALLEN C.
2021MNRAS.503.4092B 17       D               1 124 ~ Revisiting the Kepler field with TESS: Improved ephemerides using TESS 2 min data. BATTLEY M.P., KUNIMOTO M., ARMSTRONG D.J., et al.
2021AJ....161..246J viz 279       D     X         7 204 12 Following up the Kepler field: masses of targets for transit timing and atmospheric characterization. JONTOF-HUTTER D., WOLFGANG A., FORD E.B., et al.
2021AJ....162...98B viz 17       D               1 2175 ~ Seeking echoes of circumstellar disks in Kepler light curves. BROMLEY B.C., LEONARD A., QUINTANILLA A., et al.
2021ApJ...921...24S viz 17       D               8 328 1 The occurrence-weighted median planets discovered by transit surveys orbiting solar-type stars and their implications for planet formation and evolution. SCHLAUFMAN K.C. and HALPERN N.D.
2022A&A...658A.107O 108       D         F     2 48 4 The similarity of multi-planet systems. OTEGI J.F., HELLED R. and BOUCHY F.
2022AJ....163..277B 179           X         4 12 7 A Multiplanet System's Sole Super-puff: Exploring Allowable Physical Parameters for the Cold Super-puff HIP 41378 f. BELKOVSKI M., BECKER J., HOWE A., et al.
2022AJ....163..293T viz 90           X         2 44 4 The TESS-Keck Survey. XI. Mass Measurements for Four Transiting Sub-Neptunes Orbiting K Dwarf TOI-1246. TURTELBOOM E.V., WEISS L.M., DRESSING C.D., et al.
2022AJ....164...72M 90               F     1 61 6 Edge-of-the-Multis: Evidence for a Transition in the Outer Architectures of Compact Multiplanet Systems. MILLHOLLAND S.C., HE M.Y. and ZINK J.K.
2022ApJS..261...26S viz 18       D               5 1893 2 Magnetic Activity and Physical Parameters of Exoplanet Host Stars Based on LAMOST DR7, TESS, Kepler, and K2 Surveys. SU T., ZHANG L.-Y., LONG L., et al.
2022ApJ...937...90D 90             C       1 32 17 Cleaning Our Hazy Lens: Exploring Trends in Transmission Spectra of Warm Exoplanets. DYMONT A.H., YU X., OHNO K., et al.
2022AJ....164..242S 179           X C       3 12 ~ Refining the Masses and Radii of the Star Kepler-33 and its Five Transiting Planets. SIKORA J., ROWE J., JONTOF-HUTTER D., et al.
2023A&A...669A..40O 140           X         3 33 5 HD 191939 revisited: New and refined planet mass determinations, and a new planet in the habitable zone. ORELL-MIQUEL J., NOWAK G., MURGAS F., et al.
2023A&A...669A.117L viz 47           X         1 57 ~ Removing biases on the density of sub-Neptunes characterised via transit timing variations Update on the mass-radius relationship of 34 Kepler planets. LELEU A., DELISLE J.-B., UDRY S., et al.
2023A&A...670A..68M viz 159       D     X   F     3 42 3 Framework for the architecture of exoplanetary systems I. Four classes of planetary system architecture. MISHRA L., ALIBERT Y., UDRY S., et al.
2023AJ....165..174W 47           X         1 14 1 Dynamical Evolution of Closely Packed Multiple Planetary Systems Subject to Atmospheric Mass Loss. WANG S. and LIN D.N.C.
2023AJ....165..236M 47           X         1 23 ~ Transit Depth Variations Reveal TOI-216 b to be a Super-puff. McKEE B.J. and MONTET B.T.
2023AJ....166...94M 19       D               4 105 ~ exoMMR: A New Python Package to Confirm and Characterize Mean Motion Resonances. MacDONALD M.G., POLANIA VIVAS M.S., D'ANGIOLILLO S., et al.
2023ApJ...954..137S 93               F     1 64 ~ Can Cold Jupiters Sculpt the Edge-of-the-multis? SOBSKI N. and MILLHOLLAND S.C.
2023ApJ...958L..21L 93               F     1 24 ~ Tidal Dissipation Regimes among the Short-period Exoplanets. LOUDEN E.M., LAUGHLIN G.P. and MILLHOLLAND S.C.
2024ApJ...962L...4X 100               F     1 15 ~ Earths Are Not Super-Earths, Saturns Are Not Jupiters: Imprints of Pressure-bump Planet Formation on Planetary Architectures. XU W. and WANG S.
2024AJ....167..103J 420       D     X C       8 190 ~ Kepler Multitransiting System Physical Properties and Impact Parameter Variations. JUDKOVSKY Y., OFIR A. and AHARONSON O.
2024AJ....167..112W 50           X         1 22 ~ Resonant Chains and the Convergent Migration of Planets in Protoplanetary Disks. WONG K.H. and LEE M.H.

goto View the references in ADSLimited to 100