other query modes : |
Identifier query |
Coordinate query |
Criteria query |
Reference query |
Basic query |
Script submission |
TAP |
Output options |
Help |
NAME Gaia Sausage , the SIMBAD biblio (71 results) | C.D.S. - SIMBAD4 rel 1.7 - 2021.03.01CET09:25:00 |
Bibcode/DOI | Score |
in Title|Abstract| Keywords |
in a table | in teXt, Caption, ... | Nb occurence | Nb objects in ref |
Citations (from ADS) |
Title | First 3 Authors |
---|---|---|---|---|---|---|---|---|---|
2021ApJ...907...10L | 2300 | A | D | S X C | 45 | 31 | ~ | Dynamically tagged groups of very metal-poor halo stars from the HK and Hamburg/ESO surveys. | LIMBERG G., ROSSI S., BEERS T.C., et al. |
2021ApJ...907..101A | 900 | A | D | X C | 18 | 11 | ~ | A blueprint for the Milky Way's stellar populations. II. Improved isochrone calibration in the SDSS and Pan-STARRS photometric systems. | AN D. and BEERS T.C. |
2021ApJ...907L..16R | 1330 | A | X C | 26 | 5 | ~ | Icarus: a flat and fast prograde stellar stream in the Milky Way disk. | RE FIORENTIN P., SPAGNA A., LATTANZI M.G., et al. | |
2021ApJ...908L...8A | 600 | T A | D | S X | 11 | 23 | ~ |
Elevated r-process enrichment in Gaia Sausage and Sequoia. |
AGUADO D.S., BELOKUROV V., MYEONG G.C., et al. |
2021MNRAS.500..889A | 100 | X | 2 | 38 | ~ | The S2 stream: the shreds of a primitive dwarf galaxy. | AGUADO D.S., MYEONG G.C., BELOKUROV V., et al. | ||
2021MNRAS.500.4578M | 50 | X | 1 | 22 | ~ | Simulations of globular clusters within their parent galaxies: multiple stellar populations and internal kinematics. | McKENZIE M. and BEKKI K. | ||
2021MNRAS.501..179M | 50 | X | 1 | 29 | ~ | Probing the nature of dark matter with accreted globular cluster streams. | MALHAN K., VALLURI M. and FREESE K. | ||
2020A&A...635A..93P | 93 | X | 2 | 30 | ~ | Pal 13: its moderately extended low-density halo and its accretion history. | PIATTI A.E. and FERNANDEZ-TRINCADO J.G. | ||
2020A&A...635A.125Y | 392 | D | X C | 8 | 150 | ~ | The origin of globular cluster FSR 1758. | YEH F.-C., CARRARO G., KORCHAGIN V.I., et al. | |
2020A&A...636A..75O | 47 | X | 1 | 4 | ~ | Cataloging accreted stars within Gaia DR2 using deep learning. | OSTDIEK B., NECIB L., COHEN T., et al. | ||
2020A&A...636A.115D | 1008 | A | X | 22 | 95 | ~ | Reviving old controversies: is the early Galaxy flat or round?. Investigations into the early phases of the Milky Way's formation through stellar kinematics and chemical abundances. | DI MATTEO P., SPITE M., HAYWOOD M., et al. | |
2020A&A...638A.122C ![]() |
93 | X | 2 | 20 | ~ | High-speed stars: Galactic hitchhikers. | CAFFAU E., MONACO L., BONIFACIO P., et al. | ||
2020A&A...638A.154K | 47 | X | 1 | 10 | ~ | The HR 1614 moving group is not a dissolving cluster. | KUSHNIRUK I., BENSBY T., FELTZING S., et al. | ||
2020A&A...642L..18K | 47 | X | 1 | 2 | ~ | The messy merger of a large satellite and a Milky Way-like galaxy. | KOPPELMAN H.H., BOS R.O.Y. and HELMI A. | ||
2020A&A...643A..15P ![]() |
187 | X | 4 | 13 | ~ | The elusive tidal tails of the Milky Way globular cluster NGC 7099. | PIATTI A.E., CARBALLO-BELLO J.A., MORA M.D., et al. | ||
2020A&A...643A..77P | 19 | D | 5 | 31 | ~ | Different sodium enhancements among multiple populations of Milky Way globular clusters. | PIATTI A.E. | ||
2020A&A...643L...4F | 215 | A | X C | 4 | 37 | ~ | Aluminium-enriched metal-poor stars buried in the inner Galaxy. | FERNANDEZ-TRINCADO J.G., BEERS T.C., MINNITI D., et al. | |
2020AJ....160...43A | 47 | X | 1 | 7 | ~ | The stellar velocity distribution function in the Milky Way galaxy. | ANGUIANO B., MAJEWSKI S.R., HAYES C.R., et al. | ||
2020ApJ...890..110G | 47 | X | 1 | 19 | ~ | Applying Noether's theorem to matter in the Milky Way: evidence for external perturbations and non-steady-state effects from Gaia Data Release 2. | GARDNER S., HINKEL A. and YANNY B. | ||
2020ApJ...891...39Y | 3732 | A | D | S X C | 79 | 31 | ~ | Dynamical relics of the ancient galactic halo. | YUAN Z., MYEONG G.C., BEERS T.C., et al. |
2020ApJ...891L..30A | 634 | A | X C | 13 | 2 | ~ | The splash without a merger. | AMARANTE J.A.S., BERALDO E SILVA L., DEBATTISTA V.P., et al. | |
2020ApJ...894...34D | 140 | X | 3 | 3 | ~ | The metallicity gradient and complex formation history of the outermost halo of the Milky Way. | DIETZ S.E., YOON J., BEERS T.C., et al. | ||
2020ApJ...896...14H | 93 | X | 2 | 3 | ~ | Insights into the formation and evolution history of the Galactic disk system. | HAN D.R., LEE Y.S., KIM Y.K., et al. | ||
2020ApJ...897...39A | 47 | X | 1 | 3 | ~ | A blueprint for the Milky Way's stellar populations: the power of large photometric and astrometric surveys. | AN D. and BEERS T.C. | ||
2020ApJ...898....4C | 47 | X | 1 | 8 | ~ | Quantifying the stellar Halo's response to the LMC's infall with spherical harmonics. | CUNNINGHAM E.C., GARAVITO-CAMARGO N., DEASON A.J., et al. | ||
2020ApJ...898L..37Y | 513 | A | D | X C | 11 | 17 | ~ | A low-mass stellar-debris stream associated with a globular cluster pair in the halo. | YUAN Z., CHANG J., BEERS T.C., et al. |
2020ApJ...899..110T | 1148 | A | S X C | 23 | 11 | ~ | Differential rotation of the halo traced by K-giant stars. | TIAN H., LIU C., WANG Y., et al. | |
2020ApJ...901...48N | 6345 | A | D | S X C | 135 | 17 | ~ | Evidence from the H3 Survey that the stellar halo is entirely comprised of substructure. | NAIDU R.P., CONROY C., BONACA A., et al. |
2020ApJ...902..119D | 2687 | A | S X | 57 | 12 | ~ | The Milky Way's shell structure reveals the time of a radial collision. | DONLON T., NEWBERG H.J., SANDERSON R., et al. | |
2020ApJ...903...25N | 47 | X | 1 | 8 | ~ | Chasing accreted structures within Gaia DR2 using deep learning. | NECIB L., OSTDIEK B., LISANTI M., et al. | ||
2020ApJ...903..131Y | 513 | X C | 10 | 5 | ~ | Existence of the metal-rich stellar halo and high-velocity thick disk in the Galaxy. | YAN Y., DU C., LI H., et al. | ||
2020ApJ...905...20R | 140 | X C | 2 | 53 | ~ | Metal-poor stars observed with the Southern African Large Telescope. | RASMUSSEN K.C., ZEPEDA J., BEERS T.C., et al. | ||
2020MNRAS.492.1641M | 47 | X | 1 | 52 | ~ | Homogeneous analysis of globular clusters from the APOGEE survey with the BACCHUS code - II. The Southern clusters and overview. | MESZAROS S., MASSERON T., GARCIA-HERNANDEZ D.A., et al. | ||
2020MNRAS.492.2161Z | 2407 | A | X C | 51 | 76 | ~ | Local RR Lyrae stars: native and alien. | ZINN R., CHEN X., LAYDEN A.C., et al. | |
2020MNRAS.492.3408P ![]() |
261 | A | X C | 5 | 49 | ~ | Evidence for Galactic disc RR Lyrae stars in the solar neighbourhood. | PRUDIL Z., DEKANY I., GREBEL E.K., et al. | |
2020MNRAS.492.3631M | 1054 | A | X C | 22 | 5 | ~ | Weighing the stellar constituents of the galactic halo with APOGEE red giant stars. | MACKERETH J.T. and BOVY J. | |
2020MNRAS.492.3816A | 233 | X | 5 | 4 | ~ | The tale of the tail - disentangling the high transverse velocity stars in Gaia DR2. | AMARANTE J.A.S., SMITH M.C. and BOECHE C. | ||
2020MNRAS.493..847F | 47 | X | 1 | 105 | ~ | Reverse engineering the Milky Way. | FORBES D.A. | ||
2020MNRAS.493.3061Y | 47 | X | 1 | 2 | ~ | Gravitational potential from small-scale clustering in action space: application to Gaia Data Release 2. | YANG T., BORUAH S.S. and AFSHORDI N. | ||
2020MNRAS.493.3363H | 47 | X | 1 | 49 | ~ | The chemical compositions of accreted and in situ galactic globular clusters according to SDSS/APOGEE. | HORTA D., SCHIAVON R.P., MACKERETH J.T., et al. | ||
2020MNRAS.493.3422R | 93 | X | 2 | 2 | ~ | The mass fraction of halo stars contributed by the disruption of globular clusters in the E-MOSAICS simulations. | REINA-CAMPOS M., HUGHES M.E., KRUIJSSEN J.M.D., et al. | ||
2020MNRAS.493.5195D ![]() |
47 | X | 1 | 9 | ~ | Ages and kinematics of chemically selected, accreted Milky Way halo stars. | DAS P., HAWKINS K. and JOFRE P. | ||
2020MNRAS.495...29E | 5673 | A | S X C | 120 | 3 | ~ | Cosmological insights into the assembly of the radial and compact stellar halo of the Milky Way. | ELIAS L.M., SALES L.V., HELMI A., et al. | |
2020MNRAS.495..743B | 47 | X | 1 | 5 | ~ | The little things matter: relating the abundance of ultrafaint satellites to the hosts' assembly history. | BOSE S., DEASON A.J., BELOKUROV V., et al. | ||
2020MNRAS.495.2645B | 1801 | A | X C | 38 | 2 | ~ | Explaining the chemical trajectories of accreted and in-situ halo stars of the Milky Way. | BROOK C.B., KAWATA D., GIBSON B.K., et al. | |
2020MNRAS.496...80V | 47 | X | 1 | 2 | ~ | Stellar migrations and metal flows - Chemical evolution of the thin disc of a simulated Milky Way analogous galaxy. | VINCENZO F. and KOBAYASHI C. | ||
2020MNRAS.496..638H | 47 | X | 1 | 2 | ~ | The globular cluster system of the Auriga simulations. | HALBESMA T.L.R., GRAND R.J.J., GOMEZ F.A., et al. | ||
2020MNRAS.496.2902M | 47 | X | 1 | 64 | ~ | Lithium and beryllium in the Gaia-Enceladus galaxy. | MOLARO P., CESCUTTI G. and FU X. | ||
2020MNRAS.496.3929D | 47 | X | 1 | 4 | ~ | The edge of the Galaxy. | DEASON A.J., FATTAHI A., FRENK C.S., et al. | ||
2020MNRAS.498.2472K | 47 | X | 1 | 82 | ~ | Kraken reveals itself - the merger history of the Milky Way reconstructed with the E-MOSAICS simulations. | KRUIJSSEN J.M.D., PFEFFER J.L., CHEVANCE M., et al. | ||
2020NatAs...4..382C | 47 | X | 1 | 3 | ~ | Age dating of an early Milky Way merger via asteroseismology of the naked-eye star ν Indi. | CHAPLIN W.J., SERENELLI A.M., MIGLIO A., et al. | ||
2019A&A...630L...4M | 45 | X | 1 | 165 | ~ | Origin of the system of globular clusters in the Milky Way. | MASSARI D., KOPPELMAN H.H. and HELMI A. | ||
2019A&A...631L...9K | 45 | X | 1 | 4 | ~ | Multiple retrograde substructures in the Galactic halo: A shattered view of Galactic history. | KOPPELMAN H.H., HELMI A., MASSARI D., et al. | ||
2019A&A...632A...4D | 90 | X | 2 | 5 | ~ | The Milky Way has no in-situ halo other than the heated thick disc. Composition of the stellar halo and age-dating the last significant merger with Gaia DR2 and APOGEE. | DI MATTEO P., HAYWOOD M., LEHNERT M.D., et al. | ||
2019A&A...632A..55K ![]() |
90 | C | 1 | 56 | ~ | An outer shade of Pal: Abundance analysis of the outer halo globular cluster Palomar 13. | KOCH A. and COTE P. | ||
2019ApJ...876..124C | 45 | X | 1 | 9 | ~ | HALO7D. I. The line-of-sight velocities of distant main-sequence stars in the Milky Way halo. | CUNNINGHAM E.C., DEASON A.J., ROCKOSI C.M., et al. | ||
2019ApJ...879..120C | 134 | X | 3 | 10 | ~ | HALO7D II: the halo velocity ellipsoid and velocity anisotropy with distant main-sequence stars. | CUNNINGHAM E.C., DEASON A.J., SANDERSON R.E., et al. | ||
2019ApJ...882...98P | 358 | X C | 7 | 40 | ~ | Formation imprints in the kinematics of the Milky Way globular cluster system. | PIATTI A.E. | ||
2019ApJ...883...27N | 134 | X | 3 | 3 | ~ | Under the FIRElight: stellar tracers of the local dark matter velocity distribution in the Milky Way. | NECIB L., LISANTI M., GARRISON-KIMMEL S., et al. | ||
2019ApJ...883L...5B | 134 | X | 3 | 3 | ~ | A Gaia-enceladus analog in the EAGLE simulation: insights into the early evolution of the Milky Way. | BIGNONE L.A., HELMI A. and TISSERA P.B. | ||
2019ApJ...884...67W | 179 | X | 4 | 4 | ~ | Constraints on the Galactic inner halo assembly history from the age gradient of blue horizontal-branch stars. | WHITTEN D.D., BEERS T.C., PLACCO V.M., et al. | ||
2019ApJ...885..102L | 45 | X | 1 | 4 | ~ | Chemical cartography. II. The assembly history of the galactic stellar halo traced by carbon-enhanced metal-poor stars. | LEE Y.S., BEERS T.C. and KIM Y.K. | ||
2019ApJ...885..139G | 45 | X | 1 | 30 | ~ | Fluorine abundances in the galactic disk. | GUERCO R., CUNHA K., SMITH V.V., et al. | ||
2019ApJ...886...76D | 699 | A | S X C | 14 | 15 | ~ | The Virgo Overdensity explained. | DONLON T., NEWBERG H.J., WEISS J., et al. | |
2019ApJ...887..237C | 179 | X | 4 | 14 | ~ | Resolving the metallicity distribution of the stellar halo with the H3 Survey. | CONROY C., NAIDU R.P., ZARITSKY D., et al. | ||
2019MNRAS.485.1029P | 520 | A | X | 12 | 23 | ~ |
Extra-tidal structures around the Gaia Sausage candidate globular cluster NGC 6779 (M56). |
PIATTI A.E. and CARBALLO-BELLO J.A. | |
2019MNRAS.485.3296W | 90 | X | 2 | 9 | ~ | The gravitational force field of the Galaxy measured from the kinematics of RR Lyrae in Gaia. | WEGG C., GERHARD O. and BIETH M. | ||
2019MNRAS.487L..47V | 2939 | T K A | X C F | 63 | 1 | ~ |
The Fall of a Giant. Chemical evolution of Enceladus, alias the Gaia Sausage. |
VINCENZO F., SPITONI E., CALURA F., et al. | |
2019MNRAS.488.1235M | 2670 | A | X C | 59 | 48 | ~ | Evidence for two early accretion events that built the Milky Way stellar halo. | MYEONG G.C., VASILIEV E., IORIO G., et al. | |
2018ApJ...863L..28M | 1892 | T | D | S X C | 41 | 22 | 66 |
The Sausage Globular Clusters. |
MYEONG G.C., EVANS N.W., BELOKUROV V., et al. |
2018Natur.563...85H | 11 | 17 | 189 | The merger that led to the formation of the Milky Way’s inner stellar halo and thick disk. | HELMI A., BABUSIAUX C., KOPPELMAN H.H., et al. |
© Université de Strasbourg/CNRS
• Contact