other query modes : |
Identifier query |
Coordinate query |
Criteria query |
Reference query |
Basic query |
Script submission |
TAP |
Output options |
Help |
NAME Gaia-Enceladus , the SIMBAD biblio (101 results) | C.D.S. - SIMBAD4 rel 1.7 - 2021.03.08CET02:05:40 |
Bibcode/DOI | Score |
in Title|Abstract| Keywords |
in a table | in teXt, Caption, ... | Nb occurence | Nb objects in ref |
Citations (from ADS) |
Title | First 3 Authors |
---|---|---|---|---|---|---|---|---|---|
2021A&A...645A..69K ![]() |
380 | A | X C | 7 | 16 | ~ | The reduced proper motion selected halo: Methods and description of the catalogue. | KOPPELMAN H.H. and HELMI A. | |
2021A&A...645A..85M ![]() |
200 | X | 4 | 11 | ~ | Age dissection of the Milky Way discs: Red giants in the Kepler field. | MIGLIO A., CHIAPPINI C., MACKERETH J.T., et al. | ||
2021A&A...645A.116K ![]() |
50 | X | 1 | 10 | ~ | The search for extratidal star candidates around Galactic globular clusters NGC 2808, NGC 6266, and NGC 6397 with Gaia DR2 astrometry. | KUNDU R., NAVARRETE C., FERNANDEZ-TRINCADO J.G., et al. | ||
2021ApJ...906...96A | 50 | X | 1 | 22 | ~ | Ultrafaint dwarfs in a Milky Way context: introducing the mint condition DC Justice League simulations. | APPLEBAUM E., BROOKS A.M., CHRISTENSEN C.R., et al. | ||
2021ApJ...907...10L | 2350 | A | D | S X C | 46 | 31 | ~ | Dynamically tagged groups of very metal-poor halo stars from the HK and Hamburg/ESO surveys. | LIMBERG G., ROSSI S., BEERS T.C., et al. |
2021ApJ...907..101A | 900 | A | D | X C | 18 | 11 | ~ | A blueprint for the Milky Way's stellar populations. II. Improved isochrone calibration in the SDSS and Pan-STARRS photometric systems. | AN D. and BEERS T.C. |
2021ApJ...907L..16R | 1330 | A | X C | 26 | 5 | ~ | Icarus: a flat and fast prograde stellar stream in the Milky Way disk. | RE FIORENTIN P., SPAGNA A., LATTANZI M.G., et al. | |
2021ApJ...908...79G | 170 | D | X | 4 | 45 | ~ | The r-process Alliance: chemodynamically tagged groups of halo r-process-enhanced stars reveal a shared chemical-evolution history. | GUDIN D., SHANK D., BEERS T.C., et al. | |
2021MNRAS.500.1385H | 80 | A | X | 2 | 4 | ~ | Evidence from APOGEE for the presence of a major building block of the halo buried in the inner Galaxy. | HORTA D., SCHIAVON R.P., MACKERETH J.T., et al. | |
2021MNRAS.500.2514P | 100 | A | D | X | 3 | 19 | ~ | The accreted nuclear clusters of the Milky Way. | PFEFFER J., LARDO C., BASTIAN N., et al. |
2021MNRAS.500.3750S | 50 | X | 1 | 1 | ~ | Exploring the origin of low-metallicity stars in Milky-Way-like galaxies with the NIHAO-UHD simulations. | SESTITO F., BUCK T., STARKENBURG E., et al. | ||
2021MNRAS.500.4578M | 50 | X | 1 | 22 | ~ | Simulations of globular clusters within their parent galaxies: multiple stellar populations and internal kinematics. | McKENZIE M. and BEKKI K. | ||
2021MNRAS.500.4768H | 50 | X | 1 | 58 | ~ | Linking globular cluster formation at low and high redshift through the age-metallicity relation in E-MOSAICS. | HORTA D., HUGHES M.E., PFEFFER J.L., et al. | ||
2021MNRAS.500.4827N | 50 | X | 1 | 20 | ~ | Assessing uncertainties in the predicted very high energy flux of globular clusters in the Cherenkov Telescope Array era. | NDIYAVALA-DAVIDS H., VENTER C., KOPP A., et al. | ||
2021MNRAS.501..179M | 50 | X | 1 | 29 | ~ | Probing the nature of dark matter with accreted globular cluster streams. | MALHAN K., VALLURI M. and FREESE K. | ||
2020A&A...635A..58S | 47 | X | 1 | 3 | ~ | Galactic archaeology with asteroseismic ages. II. Confirmation of a delayed gas infall using Bayesian analysis based on MCMC methods. | SPITONI E., VERMA K., SILVA AGUIRRE V., et al. | ||
2020A&A...635A.125Y | 299 | D | X C | 6 | 150 | ~ | The origin of globular cluster FSR 1758. | YEH F.-C., CARRARO G., KORCHAGIN V.I., et al. | |
2020A&A...636A..75O | 140 | X | 3 | 4 | ~ | Cataloging accreted stars within Gaia DR2 using deep learning. | OSTDIEK B., NECIB L., COHEN T., et al. | ||
2020A&A...636A.106M | 47 | X | 1 | 8 | ~ | Simulations of satellite tidal debris in the Milky Way halo. | MAZZARINI M., JUST A., MACCIO A.V., et al. | ||
2020A&A...636A.115D | 140 | X | 3 | 95 | ~ | Reviving old controversies: is the early Galaxy flat or round?. Investigations into the early phases of the Milky Way's formation through stellar kinematics and chemical abundances. | DI MATTEO P., SPITE M., HAYWOOD M., et al. | ||
2020A&A...637A..98H ![]() |
495 | A | X C | 10 | 66 | ~ | Purveyors of fine halos. II. Chemodynamical association of halo stars with Milky Way globular clusters. | HANKE M., KOCH A., PRUDIL Z., et al. | |
2020A&A...638A.122C ![]() |
93 | X | 2 | 20 | ~ | High-speed stars: Galactic hitchhikers. | CAFFAU E., MONACO L., BONIFACIO P., et al. | ||
2020A&A...638A.154K | 47 | X | 1 | 10 | ~ | The HR 1614 moving group is not a dissolving cluster. | KUSHNIRUK I., BENSBY T., FELTZING S., et al. | ||
2020A&A...642L..18K | 1101 | A | X C | 23 | 2 | ~ | The messy merger of a large satellite and a Milky Way-like galaxy. | KOPPELMAN H.H., BOS R.O.Y. and HELMI A. | |
2020A&A...643A..15P ![]() |
187 | X | 4 | 13 | ~ | The elusive tidal tails of the Milky Way globular cluster NGC 7099. | PIATTI A.E., CARBALLO-BELLO J.A., MORA M.D., et al. | ||
2020A&A...643A..77P | 19 | D | 12 | 31 | ~ | Different sodium enhancements among multiple populations of Milky Way globular clusters. | PIATTI A.E. | ||
2020A&A...643A.145F | 93 | X | 2 | 17 | ~ | The enigmatic globular cluster UKS 1 obscured by the bulge: H-band discovery of nitrogen-enhanced stars. | FERNANDEZ-TRINCADO J.G., MINNITI D., BEERS T.C., et al. | ||
2020A&A...644A..83F ![]() |
261 | A | X C | 5 | 5 | ~ | Jurassic: A chemically anomalous structure in the Galactic halo. | FERNANDEZ-TRINCADO J.G., BEERS T.C. and MINNITI D. | |
2020A&A...644A..95B ![]() |
93 | X | 2 | 96 | ~ | Separation between RR Lyrae and type II Cepheids and their importance for a distance determination: the case of omega Cen. | BRAGA V.F., BONO G., FIORENTINO G., et al. | ||
2020AJ....159...46K ![]() |
47 | X | 1 | 21 | ~ | Elemental abundances in M31: the kinematics and chemical evolution of dwarf spheroidal satellite galaxies. | KIRBY E.N., GILBERT K.M., ESCALA I., et al. | ||
2020AJ....159..254J | 168 | A | X | 4 | 280 | ~ | The most metal-poor stars in Omega Centauri (NGC 5139). | JOHNSON C.I., DUPREE A.K., MATEO M., et al. | |
2020AJ....160...43A | 47 | X | 1 | 7 | ~ | The stellar velocity distribution function in the Milky Way galaxy. | ANGUIANO B., MAJEWSKI S.R., HAYES C.R., et al. | ||
2020AJ....160..181J | 47 | X | 1 | 32 | ~ | The Southern Stellar Stream Spectroscopic Survey (s5): chemical Abundances of seven stellar streams. | JI A.P., LI T.S., HANSEN T.T., et al. | ||
2020AJ....160..241K | 47 | X | 1 | 38 | ~ | Spectroscopic analysis of the bulge globular cluster ESO 456-SC38. | KUNDER A.M. and BUTLER E. | ||
2020ApJ...889..119T | 47 | X | 1 | 6 | ~ | R-process enrichment in the Galactic halo characterized by nucleosynthesis variation in the ejecta of coalescing neutron star binaries. | TSUJIMOTO T., NISHIMURA N. and KYUTOKU K. | ||
2020ApJ...890..110G | 159 | D | X | 4 | 19 | ~ | Applying Noether's theorem to matter in the Milky Way: evidence for external perturbations and non-steady-state effects from Gaia Data Release 2. | GARDNER S., HINKEL A. and YANNY B. | |
2020ApJ...890..136M | 47 | X | 1 | 18 | ~ | Two ultra-faint Milky Way stellar systems discovered in early data from the DECam Local Volume Exploration survey. | MAU S., CERNY W., PACE A.B., et al. | ||
2020ApJ...891...39Y | 140 | X | 3 | 31 | ~ | Dynamical relics of the ancient galactic halo. | YUAN Z., MYEONG G.C., BEERS T.C., et al. | ||
2020ApJ...891L..30A | 75 | A | X | 2 | 2 | ~ | The splash without a merger. | AMARANTE J.A.S., BERALDO E SILVA L., DEBATTISTA V.P., et al. | |
2020ApJ...892...20A | 47 | X | 1 | 8 | ~ | A deep view into the nucleus of the Sagittarius dwarf spheroidal galaxy with MUSE. II. Kinematic characterization of the stellar populations. | ALFARO-CUELLO M., KACHAROV N., NEUMAYER N., et al. | ||
2020ApJ...893...48N | 93 | X | 2 | 43 | ~ | Milky Way satellite census. II. Galaxy-halo connection constraints including the impact of the Large Magellanic Cloud. | NADLER E.O., WECHSLER R.H., BECHTOL K., et al. | ||
2020ApJ...894...34D | 47 | X | 1 | 3 | ~ | The metallicity gradient and complex formation history of the outermost halo of the Milky Way. | DIETZ S.E., YOON J., BEERS T.C., et al. | ||
2020ApJ...895...15R | 47 | X | 1 | 7 | ~ | A kinematic view of NGC 1261: structural parameters, internal dispersion, absolute proper motion, and Blue Straggler stars. | RASO S., LIBRALATO M., BELLINI A., et al. | ||
2020ApJ...896...14H | 187 | X | 4 | 3 | ~ | Insights into the formation and evolution history of the Galactic disk system. | HAN D.R., LEE Y.S., KIM Y.K., et al. | ||
2020ApJ...897...39A | 933 | X C | 19 | 3 | ~ | A blueprint for the Milky Way's stellar populations: the power of large photometric and astrometric surveys. | AN D. and BEERS T.C. | ||
2020ApJ...898....4C | 47 | X | 1 | 8 | ~ | Quantifying the stellar Halo's response to the LMC's infall with spherical harmonics. | CUNNINGHAM E.C., GARAVITO-CAMARGO N., DEASON A.J., et al. | ||
2020ApJ...898L..37Y | 513 | A | D | X C | 11 | 17 | ~ | A low-mass stellar-debris stream associated with a globular cluster pair in the halo. | YUAN Z., CHANG J., BEERS T.C., et al. |
2020ApJ...899..110T | 1148 | A | S X C | 23 | 11 | ~ | Differential rotation of the halo traced by K-giant stars. | TIAN H., LIU C., WANG Y., et al. | |
2020ApJ...901...48N | 6345 | A | D | S X C | 135 | 17 | ~ | Evidence from the H3 Survey that the stellar halo is entirely comprised of substructure. | NAIDU R.P., CONROY C., BONACA A., et al. |
2020ApJ...901L..29A | 93 | X | 2 | 15 | ~ | On the origin of a rotating metal-poor stellar population in the Milky Way nuclear cluster. | ARCA SEDDA M., GUALANDRIS A., DO T., et al. | ||
2020ApJ...902...51E | 327 | X | 7 | 16 | ~ | Elemental abundances in M31: properties of the inner stellar halo. | ESCALA I., KIRBY E.N., GILBERT K.M., et al. | ||
2020ApJ...902..119D | 168 | A | X | 4 | 12 | ~ | The Milky Way's shell structure reveals the time of a radial collision. | DONLON T., NEWBERG H.J., SANDERSON R., et al. | |
2020ApJ...902L..28C | 47 | X | 1 | 6 | ~ | Toward a direct measure of the galactic acceleration. | CHAKRABARTI S., WRIGHT J., CHANG P., et al. | ||
2020ApJ...903...25N | 2286 | A | D | S X C | 48 | 8 | ~ | Chasing accreted structures within Gaia DR2 using deep learning. | NECIB L., OSTDIEK B., LISANTI M., et al. |
2020ApJ...903...88M | 47 | X | 1 | 6 | ~ | Cosmological insights into the early accretion of r-process-enhanced stars. I. A comprehensive chemodynamical analysis of LAMOST J1109+0754. | MARDINI M.K., PLACCO V.M., MEIRON Y., et al. | ||
2020ApJ...903..131Y | 140 | X | 3 | 5 | ~ | Existence of the metal-rich stellar halo and high-velocity thick disk in the Galaxy. | YAN Y., DU C., LI H., et al. | ||
2020ApJ...905...20R | 140 | X C | 2 | 53 | ~ | Metal-poor stars observed with the Southern African Large Telescope. | RASMUSSEN K.C., ZEPEDA J., BEERS T.C., et al. | ||
2020ApJ...905..100C | 47 | X | 1 | 16 | ~ | Is NGC 5824 the core of the progenitor of the Cetus Stream? | CHANG J., YUAN Z., XUE X.-X., et al. | ||
2020MNRAS.491..515M | 233 | X | 5 | 46 | ~ | Multiple populations in globular clusters and their parent galaxies. | MILONE A.P., MARINO A.F., DA COSTA G.S., et al. | ||
2020MNRAS.491.1531C | 47 | X | 1 | 6 | ~ | On the mass assembly history of the Local Group. | CARLESI E., HOFFMAN Y., GOTTLOBER S., et al. | ||
2020MNRAS.491.2043L | 47 | X | 1 | 1 | ~ | The GALAH survey: temporal chemical enrichment of the galactic disc. | LIN J., ASPLUND M., TING Y.-S., et al. | ||
2020MNRAS.491L..40K | 93 | X | 2 | 4 | ~ | An ancient double degenerate merger in the Milky Way halo. | KAWKA A., VENNES S. and FERRARIO L. | ||
2020MNRAS.492.2161Z | 121 | A | X | 3 | 76 | ~ | Local RR Lyrae stars: native and alien. | ZINN R., CHEN X., LAYDEN A.C., et al. | |
2020MNRAS.492.3241V | 355 | A | X C | 7 | 21 | ~ | The Pristine survey - IX. CFHT ESPaDOnS spectroscopic analysis of 115 bright metal-poor candidate stars. | VENN K.A., KIELTY C.L., SESTITO F., et al. | |
2020MNRAS.492.3408P ![]() |
681 | A | X C | 14 | 49 | ~ | Evidence for Galactic disc RR Lyrae stars in the solar neighbourhood. | PRUDIL Z., DEKANY I., GREBEL E.K., et al. | |
2020MNRAS.492.3631M | 774 | A | X C | 16 | 5 | ~ | Weighing the stellar constituents of the galactic halo with APOGEE red giant stars. | MACKERETH J.T. and BOVY J. | |
2020MNRAS.492.3816A | 187 | X | 4 | 4 | ~ | The tale of the tail - disentangling the high transverse velocity stars in Gaia DR2. | AMARANTE J.A.S., SMITH M.C. and BOECHE C. | ||
2020MNRAS.493..847F | 1232 | D | X C | 26 | 105 | ~ | Reverse engineering the Milky Way. | FORBES D.A. | |
2020MNRAS.493.2688B | 47 | X | 1 | 11 | ~ | Lifting the dust veil from the globular cluster Palomar 2. | BONATTO C. and CHIES-SANTOS A.L. | ||
2020MNRAS.493.3061Y | 47 | X | 1 | 2 | ~ | Gravitational potential from small-scale clustering in action space: application to Gaia Data Release 2. | YANG T., BORUAH S.S. and AFSHORDI N. | ||
2020MNRAS.493.3363H | 1493 | X C | 31 | 49 | ~ | The chemical compositions of accreted and in situ galactic globular clusters according to SDSS/APOGEE. | HORTA D., SCHIAVON R.P., MACKERETH J.T., et al. | ||
2020MNRAS.493.3422R | 93 | X | 2 | 2 | ~ | The mass fraction of halo stars contributed by the disruption of globular clusters in the E-MOSAICS simulations. | REINA-CAMPOS M., HUGHES M.E., KRUIJSSEN J.M.D., et al. | ||
2020MNRAS.493.5195D ![]() |
47 | X | 1 | 9 | ~ | Ages and kinematics of chemically selected, accreted Milky Way halo stars. | DAS P., HAWKINS K. and JOFRE P. | ||
2020MNRAS.495...29E | 5393 | A | S X C | 114 | 3 | ~ | Cosmological insights into the assembly of the radial and compact stellar halo of the Milky Way. | ELIAS L.M., SALES L.V., HELMI A., et al. | |
2020MNRAS.495..743B | 47 | X | 1 | 5 | ~ | The little things matter: relating the abundance of ultrafaint satellites to the hosts' assembly history. | BOSE S., DEASON A.J., BELOKUROV V., et al. | ||
2020MNRAS.495.2645B | 1801 | A | X C | 38 | 2 | ~ | Explaining the chemical trajectories of accreted and in-situ halo stars of the Milky Way. | BROOK C.B., KAWATA D., GIBSON B.K., et al. | |
2020MNRAS.496...80V | 47 | X | 1 | 2 | ~ | Stellar migrations and metal flows - Chemical evolution of the thin disc of a simulated Milky Way analogous galaxy. | VINCENZO F. and KOBAYASHI C. | ||
2020MNRAS.496.2902M | 2081 | T K A | S X C | 42 | 64 | ~ |
Lithium and beryllium in the Gaia-Enceladus galaxy. |
MOLARO P., CESCUTTI G. and FU X. | |
2020MNRAS.498.1710P | 401 | A | X | 9 | 3 | ~ | Chemical evolution of the Milky Way: constraints on the formation of the thick and thin discs. | PALLA M., MATTEUCCI F., SPITONI E., et al. | |
2020MNRAS.498.2472K | 2426 | A | D | X C | 52 | 82 | ~ | Kraken reveals itself - the merger history of the Milky Way reconstructed with the E-MOSAICS simulations. | KRUIJSSEN J.M.D., PFEFFER J.L., CHEVANCE M., et al. |
2020MNRAS.499..804G | 327 | X C F | 5 | 163 | ~ | The effects of dwarf galaxies on the orbital evolution of galactic globular clusters. | GARROW T., WEBB J.J. and BOVY J. | ||
2020MNRAS.499.4863P | 1101 | A | X C F | 22 | 10 | ~ | Predicting accreted satellite galaxy masses and accretion redshifts based on globular cluster orbits in the E-MOSAICS simulations. | PFEFFER J.L., TRUJILLO-GOMEZ S., KRUIJSSEN J.M.D., et al. | |
2020NatAs...4..382C | 868 | A | X C | 18 | 3 | ~ | Age dating of an early Milky Way merger via asteroseismology of the naked-eye star ν Indi. | CHAPLIN W.J., SERENELLI A.M., MIGLIO A., et al. | |
2020NatAs...4..590P | 47 | X | 1 | 3 | ~ | Evidence of a dynamically evolving Galactic warp. | POGGIO E., DRIMMEL R., ANDRAE R., et al. | ||
2019A&A...630A.104A ![]() |
45 | X | 1 | 190 | ~ | Carbon, oxygen, and iron abundances in disk and halo stars. Implications of 3D non-LTE spectral line formation. | AMARSI A.M., NISSEN P.E. and SKULADOTTIR A. | ||
2019A&A...630L...4M | 430 | A | X C | 9 | 165 | ~ | Origin of the system of globular clusters in the Milky Way. | MASSARI D., KOPPELMAN H.H. and HELMI A. | |
2019A&A...631L...9K | 923 | A | X | 21 | 4 | ~ | Multiple retrograde substructures in the Galactic halo: A shattered view of Galactic history. | KOPPELMAN H.H., HELMI A., MASSARI D., et al. | |
2019A&A...632A..55K ![]() |
699 | A | S X C | 14 | 56 | ~ | An outer shade of Pal: Abundance analysis of the outer halo globular cluster Palomar 13. | KOCH A. and COTE P. | |
2019ApJ...882...98P | 358 | X C | 7 | 40 | ~ | Formation imprints in the kinematics of the Milky Way globular cluster system. | PIATTI A.E. | ||
2019ApJ...883...27N | 90 | X | 2 | 3 | ~ | Under the FIRElight: stellar tracers of the local dark matter velocity distribution in the Milky Way. | NECIB L., LISANTI M., GARRISON-KIMMEL S., et al. | ||
2019ApJ...883L...5B | 134 | T | X | 2 | 3 | ~ | A Gaia-enceladus analog in the EAGLE simulation: insights into the early evolution of the Milky Way. | BIGNONE L.A., HELMI A. and TISSERA P.B. | |
2019ApJ...883L..31C | 90 | C | 1 | 4 | ~ | Radial dependence of the proto-globular cluster contribution to the Milky Way formation. | CHUNG C., PASQUATO M., LEE S.-Y., et al. | ||
2019ApJ...884...67W | 340 | A | X | 8 | 4 | ~ | Constraints on the Galactic inner halo assembly history from the age gradient of blue horizontal-branch stars. | WHITTEN D.D., BEERS T.C., PLACCO V.M., et al. | |
2019ApJ...885..102L | 45 | X | 1 | 4 | ~ | Chemical cartography. II. The assembly history of the galactic stellar halo traced by carbon-enhanced metal-poor stars. | LEE Y.S., BEERS T.C. and KIM Y.K. | ||
2019ApJ...885..139G | 45 | X | 1 | 30 | ~ | Fluorine abundances in the galactic disk. | GUERCO R., CUNHA K., SMITH V.V., et al. | ||
2019ApJ...886...76D | 161 | A | X | 4 | 15 | ~ | The Virgo Overdensity explained. | DONLON T., NEWBERG H.J., WEISS J., et al. | |
2019ApJ...887...22C | 45 | X | 1 | 7 | ~ | Evidence for the third stellar population in the Milky Way's disk. | CAROLLO D., CHIBA M., ISHIGAKI M., et al. | ||
2019ApJ...887..237C | 430 | A | X C | 9 | 14 | ~ | Resolving the metallicity distribution of the stellar halo with the H3 Survey. | CONROY C., NAIDU R.P., ZARITSKY D., et al. | |
2019MNRAS.489.4962K | 45 | X | 1 | 7 | ~ | The GALAH survey and Gaia DR2: Linking ridges, arches, and vertical waves in the kinematics of the Milky Way. | KHANNA S., SHARMA S., TEPPER-GARCIA T., et al. | ||
2019NatAs...3..932G | 493 | X C | 10 | 2 | ~ | Uncovering the birth of the Milky Way through accurate stellar ages with Gaia. | GALLART C., BERNARD E.J., BROOK C.B., et al. | ||
2018Natur.563...85H | 11 | 17 | 189 | The merger that led to the formation of the Milky Way’s inner stellar halo and thick disk. | HELMI A., BABUSIAUX C., KOPPELMAN H.H., et al. |
© Université de Strasbourg/CNRS
• Contact