PS1-11af , the SIMBAD biblio

PS1-11af , the SIMBAD biblio (67 results) C.D.S. - SIMBAD4 rel 1.8 - 2024.04.25CEST07:22:37


Sort references on where and how often the object is cited
trying to find the most relevant references on this object.
More on score
Bibcode/DOI Score in Title|Abstract|
Keywords
in a table in teXt, Caption, ... Nb occurence Nb objects in ref Citations
(from ADS)
Title First 3 Authors
2014ApJ...780...44C 6992 T   A S   X C       175 17 183 The ultraviolet-bright, slowly declining transient
PS1-11af as a partial tidal disruption event.
CHORNOCK R., BERGER E., GEZARI S., et al.
2014ApJ...792...53V 772       D     X C       19 6 108 Measurement of the rate of stellar tidal disruption flares. VAN VELZEN S. and FARRAR G.R.
2014ApJ...793...38A viz 90           X         2 15 344 A continuum of H- to He-rich tidal disruption candidates with a preference for E+A galaxies. ARCAVI I., GAL-YAM A., SULLIVAN M., et al.
2014ApJ...795..142G viz 16       D               1 448 7 Defining photometric peculiar type Ia supernovae. GONZALEZ-GAITAN S., HSIAO E.Y., PIGNATA G., et al.
2014MNRAS.445.3263H 83           X         2 26 217 ASASSN-14ae: a tidal disruption event at 200 Mpc. HOLOIEN T.W.-S., PRIETO J.L., BERSIER D., et al.
2015ApJ...798...12V 120           X C       2 19 63 A luminous, fast rising UV-transient discovered by ROTSE: a tidal disruption event? VINKO J., YUAN F., QUIMBY R.M., et al.
2015ApJ...805...83M 323           X C       7 3 32 Disk winds as an explanation for slowly evolving temperatures in tidal disruption events. MILLER M.C.
2015ApJ...806..164P 71       D     X         2 7 222 'Disk formation versus disk accretion–What powers tidal disruption events? PIRAN T., SVIRSKI G., KROLIK J., et al.
2015MNRAS.454.2321S 80           X         2 6 22 Insights into tidal disruption of stars from PS1-10jh. STRUBBE L.E. and MURRAY N.
2015MNRAS.453.3213S 51           X         1 5 113 Powerful radiative jets in supercritical accretion discs around non-spinning black holes. SADOWSKI A. and NARAYAN R.
2016Sci...351...62V 46           X         1 24 146 A radio jet from the optical and X-ray bright stellar tidal disruption flare ASASSN-14li. VAN VELZEN S., ANDERSON G.E., STONE N.C., et al.
2016Sci...351..257D 94           X         2 12 172 ASASSN-15lh: A highly super-luminous supernova. DONG S., SHAPPEE B.J., PRIETO J.L., et al.
2016MNRAS.455..603B 162           X         4 3 4 Gaia transient detection efficiency: hunting for nuclear transients. BLAGORODNOVA N., VAN VELZEN S., HARRISON D.L., et al.
2016MNRAS.455..859S 282           X C F     5 165 261 Rates of stellar tidal disruption as probes of the supermassive black hole mass function. STONE N.C. and METZGER B.D.
2016MNRAS.455.2918H viz 55           X         1 17 270 Six months of multiwavelength follow-up of the tidal disruption candidate ASASSN-14li and implied TDE rates from ASAS-SN. HOLOIEN T.W.-S., KOCHANEK C.S., PRIETO J.L., et al.
2016ApJ...818L..21F 49           X         1 15 149 Tidal disruption events prefer unusual host galaxies. FRENCH K.D., ARCAVI I. and ZABLUDOFF A.
2016ApJ...819L..25A 59           X         1 8 153 Discovery of an outflow from radio observations of the tidal disruption event ASASSN-14li. ALEXANDER K.D., BERGER E., GUILLOCHON J., et al.
2016MNRAS.458..127K 41           X         1 11 19 Abundance anomalies in tidal disruption events. KOCHANEK C.S.
2016MNRAS.461..371K 91             C       1 9 101 Tidal disruption event demographics. KOCHANEK C.S.
2016MNRAS.462.3993B 82           X         2 9 19 Hello darkness my old friend: the fading of the nearby TDE ASASSN-14ae. BROWN J.S., SHAPPEE B.J., HOLOIEN T.W.-S., et al.
2016ApJ...833..110I 82             C       1 13 29 Are ultra-long gamma-ray bursts caused by blue supergiant collapsars, newborn magnetars, or white dwarf tidal disruption events? IOKA K., HOTOKEZAKA K. and PIRAN T.
2017ApJ...838..149A 545       D     X         14 99 187 New physical insights about tidal disruption events from a comprehensive observational inventory At X-ray wavelengths. AUCHETTL K., GUILLOCHON J. and RAMIREZ-RUIZ E.
2017ApJ...842...29H 170           X         4 16 129 Revisiting optical tidal disruption events with iPTF16axa. HUNG T., GEZARI S., BLAGORODNOVA N., et al.
2017ApJ...843..106B 248           X C       5 25 122 PS16dtm: a tidal disruption event in a narrow-line Seyfert 1 galaxy. BLANCHARD P.K., NICHOLL M., BERGER E., et al.
2017ApJ...844...46B viz 172           X C       3 12 124 IPTF16fnl: a faint and fast tidal disruption event in an E+A galaxy. BLAGORODNOVA N., GEZARI S., HUNG T., et al.
2017ApJ...844...75M 122           X C       2 15 13 Periodic accretion-powered flares from colliding EMRIs as TDE imposters. METZGER B.D. and STONE N.C.
2017ApJ...846..150Y 42           X         1 8 8 The carbon and nitrogen abundance ratio in the broad line region of tidal disruption events. YANG C., WANG T., FERLAND G.J., et al.
2017MNRAS.471.1694W 47           X         1 16 108 Black hole masses of tidal disruption event host galaxies. WEVERS T., VAN VELZEN S., JONKER P.G., et al.
2018ApJ...852...72V viz 104       D     X         3 18 106 On the mass and luminosity functions of tidal disruption flares: rate suppression due to black hole event horizons. VAN VELZEN S.
2018ApJ...853...39G 99       D       C       2 41 25 A dependence of the tidal disruption event rate on global stellar surface mass density and stellar velocity dispersion. GRAUR O., FRENCH K.D., ZAHID H.J., et al.
2018ApJ...855...54R 47           X         1 9 61 What sets the line profiles in tidal disruption events? ROTH N. and KASEN D.
2018MNRAS.474.3307S 99       D     X         3 17 13 Spectral features of tidal disruption candidates and alternative origins for such transient flares. SAXTON C.J., PERETS H.B. and BASKIN A.
2018ApJ...857..109G 83               F     1 10 12 Tidal disruptions of main-sequence stars of varying mass and age: inferences from the composition of the fallback material. GALLEGOS-GARCIA M., LAW-SMITH J. and RAMIREZ-RUIZ E.
2018ApJ...865..128L 123           X C       2 19 7 On the missing energy puzzle of tidal disruption events. LU W. and KUMAR P.
2018ApJS..238...15H 58       D     X         2 33 15 Sifting for sapphires: systematic selection of tidal disruption events in iPTF. HUNG T., GEZARI S., CENKO S.B., et al.
2018MNRAS.480.5060S 84             C       1 14 40 The delay time distribution of tidal disruption flares. STONE N.C., GENEROZOV A., VASILIEV E., et al.
2019ApJ...872..151M 192       D     X         5 17 149 Weighing black holes using tidal disruption events. MOCKLER B., GUILLOCHON J. and RAMIREZ-RUIZ E.
2019ApJ...872..198V viz 130           X C       2 13 73 The first tidal disruption flare in ZTF: from photometric selection to multi-wavelength characterization. VAN VELZEN S., GEZARI S., CENKO S.B., et al.
2019ApJ...873...92B viz 257           X C       5 10 67 The broad absorption line tidal disruption event iPTF15af: optical and ultraviolet evolution. BLAGORODNOVA N., CENKO S.B., KULKARNI S.R., et al.
2019ApJ...878...82V 46           X         1 19 82 Late-time UV observations of tidal disruption flares reveal unobscured, compact accretion disks. VAN VELZEN S., STONE N.C., METZGER B.D., et al.
2019MNRAS.487.4057K 42           X         1 15 ~ PS1-13cbe: the rapid transition of a Seyfert 2 to a Seyfert 1. KATEBI R., CHORNOCK R., BERGER E., et al.
2019MNRAS.487.4136W 185       D     X   F     4 40 71 Black hole masses of tidal disruption event host galaxies II. WEVERS T., STONE N.C., VAN VELZEN S., et al.
2019ApJ...879..119H 128           X         3 12 40 Discovery of highly blueshifted broad Balmer and metastable helium absorption lines in a tidal disruption event. HUNG T., CENKO S.B., ROTH N., et al.
2020ApJ...894L..10H 102       D       C       3 36 ~ Examining a peak-luminosity/decline-rate relationship for tidal disruption events. HINKLE J.T., HOLOIEN T.W.-S., SHAPPEE B.J., et al.
2020MNRAS.497.1925G 45           X         1 12 26 The Tidal Disruption Event AT 2018hyz II: Light-curve modelling of a partially disrupted star. GOMEZ S., NICHOLL M., SHORT P., et al.
2020ApJ...904...73R 61       D     X         2 24 40 Measuring stellar and black hole masses of tidal disruption events. RYU T., KROLIK J. and PIRAN T.
2020ApJ...905L...5U 102       D     X         3 22 ~ Application of the wind-driven model to a sample of tidal disruption events. UNO K. and MAEDA K.
2020ApJ...905...94V viz 63       D     X         2 15 53 SuperRAENN: a semisupervised supernova Photometric classification pipeline trained on Pan-STARRS1 Medium-Deep Survey supernovae. VILLAR V.A., HOSSEINZADEH G., BERGER E., et al.
2021ApJ...906..101M 105       D       C       3 14 15 An energy inventory of tidal disruption events. MOCKLER B. and RAMIREZ-RUIZ E.
2021ApJ...907...77Z 17       D               2 20 18 Measuring black hole masses from tidal disruption events and testing the MBH* relation. ZHOU Z.Q., LIU F.K., KOMOSSA S., et al.
2021ApJ...908....4V 22       D               1 35 195 Seventeen tidal disruption events from the first half of ZTF survey observations: entering a new era of population studies. VAN VELZEN S., GEZARI S., HAMMERSTEIN E., et al.
2021MNRAS.502.3385M 44 ~ Limits on mass outflow from optical tidal disruption events. MATSUMOTO T. and PIRAN T.
2021ApJ...911...31J 18       D               3 26 32 Infrared echoes of optical tidal disruption events: ∼1% dust-covering factor or less at subparsec scale. JIANG N., WANG T., HU X., et al.
2021ApJ...917....9H 45           X         1 15 18 Discovery of a fast iron low-ionization outflow in the early evolution of the nearby tidal disruption event AT 2019qiz. HUNG T., FOLEY R.J., VEILLEUX S., et al.
2021MNRAS.507.4196M 104       D         F     2 35 16 Radio constraint on outflows from tidal disruption events. MATSUMOTO T. and PIRAN T.
2022ApJ...927L..19W 45           X         1 11 6 Revisiting the Rates and Demographics of Tidal Disruption Events: Effects of the Disk Formation Efficiency. WONG T.H.T., PFISTER H. and DAI L.
2022MNRAS.513.2422L 90               F     1 32 9 The prospects of finding tidal disruption events with 2.5-m Wide-Field Survey Telescope based on mock observations. LIN Z., JIANG N. and KONG X.
2022ApJ...930...12H 90           X         2 28 23 The Curious Case of ASASSN-20hx: A Slowly Evolving, UV- and X-Ray-Luminous, Ambiguous Nuclear Transient. HINKLE J.T., HOLOIEN T.W.-S., SHAPPEE B.J., et al.
2022MNRAS.515.1146R 108       D         F     3 33 10 The bulge masses of TDE host galaxies and their scaling with black hole mass. RAMSDEN P., LANNING D., NICHOLL M., et al.
2022MNRAS.515.5604N 108       D         F     2 38 23 Systematic light-curve modelling of TDEs: statistical differences between the spectroscopic classes. NICHOLL M., LANNING D., RAMSDEN P., et al.
2022MNRAS.516L..66Z 45           X         1 16 ~ A new candidate for central tidal disruption event in SDSS J014124 + 010306 with broad Mg II line at z = 1.06. ZHANG X.-G.
2022MNRAS.517L..71Z 45           X         1 10 1 Modelling the flare in NGC 1097 from 1991 to 2004 as a tidal disruption event. ZHANG X.-G.
2023PASP..135c4101G 19       D               1 153 1 A Census of Archival X-Ray Spectra for Modeling Tidal Disruption Events. GOLDTOOTH A., ZABLUDOFF A.I., WEN S., et al.
2023MNRAS.518.5862M 47           X         1 9 ~ Advective accretion disc-corona model with fallback for tidal disruption events. MAGESHWARAN T. and BHATTACHARYYA S.
2023ApJ...955L...6Y 140           X C       2 50 ~ Tidal Disruption Event Demographics with the Zwicky Transient Facility: Volumetric Rates, Luminosity Function, and Implications for the Local Black Hole Mass Function. YAO Y., RAVI V., GEZARI S., et al.
2023PASP..135j4102K 19       D               3 20 ~ Fitting Optical Light Curves of Tidal Disruption Events with TiDE. KOVACS-STERMECZKY Z.V. and VINKO J.
2024ApJ...961..239N 50           X         1 21 ~ Probing the Subparsec Dust of a Supermassive Black Hole with the Tidal Disruption Event AT 2020mot. NEWSOME M., ARCAVI I., HOWELL D.A., et al.

goto View the references in ADS