PS1-11aib , the SIMBAD biblio

PS1-11aib , the SIMBAD biblio (15 results) C.D.S. - SIMBAD4 rel 1.8 - 2024.04.25CEST05:39:07


Sort references on where and how often the object is cited
trying to find the most relevant references on this object.
More on score
Bibcode/DOI Score in Title|Abstract|
Keywords
in a table in teXt, Caption, ... Nb occurence Nb objects in ref Citations
(from ADS)
Title First 3 Authors
2014ApJ...787..138L 97       D       C       4 32 225 Hydrogen-poor superluminous supernovae and long-duration gamma-ray bursts have similar host galaxies. LUNNAN R., CHORNOCK R., BERGER E., et al.
2015MNRAS.448.1206M viz 199           X C       4 272 59 Selecting superluminous supernovae in faint galaxies from the first year of the Pan-STARRS1 Medium Deep Survey. McCRUM M., SMARTT S.J., REST A., et al.
2015ApJ...804...90L 295       D     X         8 19 56 Zooming in on the progenitors of superluminous supernovae with the HST. LUNNAN R., CHORNOCK R., BERGER E., et al.
2018ApJ...852...81L viz 1089       D S   X C       25 32 93 Hydrogen-poor superluminous supernovae from the Pan-STARRS1 Medium Deep Survey. LUNNAN R., CHORNOCK R., BERGER E., et al.
2018MNRAS.473.1258S 17       D               2 75 131 Cosmic evolution and metal aversion in superluminous supernova host galaxies. SCHULZE S., KRUHLER T., LELOUDAS G., et al.
2018ApJ...869..166V 16       D               2 58 6 Superluminous supernovae in LSST: rates, detection metrics, and light-curve modeling. VILLAR V.A., NICHOLL M. and BERGER E.
2020ApJ...897..114B 17       D               1 67 ~ The pre-explosion mass distribution of hydrogen-poor superluminous supernova progenitors and new evidence for a mass-spin correlation. BLANCHARD P.K., BERGER E., NICHOLL M., et al.
2020ApJ...904...74G 17       D               1 145 ~ FLEET: a redshift-agnostic machine learning pipeline to rapidly identify hydrogen-poor superluminous supernovae. GOMEZ S., BERGER E., BLANCHARD P.K., et al.
2020A&A...643A..47O 17       D               1 93 ~ The interacting nature of dwarf galaxies hosting superluminous supernovae. ORUM S.V., IVENS D.L., STRANDBERG P., et al.
2021ApJ...911..142L 44           X         1 9 ~ Magnetar-driven shock breakout revisited and implications for double-peaked Type I superluminous supernovae. LIU L.-D., GAO H., WANG X.-F., et al.
2021MNRAS.504.2535I 104       D         F     3 31 24 The first Hubble diagram and cosmological constraints using superluminous supernovae. INSERRA C., SULLIVAN M., ANGUS C.R., et al.
2022MNRAS.514.2627C 18       D               1 63 5 A puzzle solved after two decades: SN 2002gh among the brightest of superluminous supernovae. CARTIER R., HAMUY M., CONTRERAS C., et al.
2022ApJ...941..107G 45           X         1 238 16 Luminous Supernovae: Unveiling a Population between Superluminous and Normal Core-collapse Supernovae. GOMEZ S., BERGER E., NICHOLL M., et al.
2023MNRAS.521.2814K 112       D         F     4 24 1 The rest-frame ultraviolet of superluminous supernovae - I. Potential as cosmological probes. KHETAN N., COOKE J. and BRANCHESI M.
2024ApJ...961..169H 270       D     X C       5 110 ~ An Extensive Hubble Space Telescope Study of the Offset and Host Light Distributions of Type I Superluminous Supernovae. HSU B., BLANCHARD P.K., BERGER E., et al.

goto View the references in ADS