PTF 09djl , the SIMBAD biblio

PTF 09djl , the SIMBAD biblio (46 results) C.D.S. - SIMBAD4 rel 1.7 - 2021.03.06CET06:17:18


Sort references on where and how often the object is cited
trying to find the most relevant references on this object.
More on score
Bibcode/DOI Score in Title|Abstract|
Keywords
in a table in teXt, Caption, ... Nb occurence Nb objects in ref Citations
(from ADS)
Title First 3 Authors
2021ApJ...906..101M 420       D     X C       8 14 ~ An energy inventory of tidal disruption events. MOCKLER B. and RAMIREZ-RUIZ E.
2021ApJ...907...77Z 370       D     X         8 20 ~ Measuring black hole masses from tidal disruption events and testing the MBH* relation. ZHOU Z.Q., LIU F.K., KOMOSSA S., et al.
2021ApJ...908....4V 20       D               1 35 ~ Seventeen tidal disruption events from the first half of ZTF survey observations: entering a new era of population studies. VAN VELZEN S., GEZARI S., HAMMERSTEIN E., et al.
2021MNRAS.500L..57Z 150           X         3 5 ~ Further evidence to support a tidal disruption event in the changing-look AGN SDSS J0159. ZHANG X.-G.
2020ApJ...889..166J 812       D S   X         17 26 ~ Implications from late-time X-ray detections of optically selected tidal disruption events: state changes, unification, and detection rates. JONKER P.G., STONE N.C., GENEROZOV A., et al.
2020ApJ...892L...1L 47           X         1 11 ~ Optical polarimetry of the tidal disruption event AT2019DSG. LEE C.-H., HUNG T., MATHESON T., et al.
2020ApJ...903...31H 280           X         6 9 ~ Double-peaked Balmer emission indicating prompt accretion disk formation in an X-ray faint tidal disruption event. HUNG T., FOLEY R.J., RAMIREZ-RUIZ E., et al.
2020ApJ...904...73R 252       D     X C       5 24 ~ Measuring stellar and black hole masses of tidal disruption events. RYU T., KROLIK J. and PIRAN T.
2020ApJ...905L...5U 19       D               1 22 ~ Application of the wind-driven model to a sample of tidal disruption events. UNO K. and MAEDA K.
2020MNRAS.498.4119S 47           X         1 9 ~ The tidal disruption event AT 2018hyz - I. Double-peaked emission lines and a flat Balmer decrement. SHORT P., NICHOLL M., LAWRENCE A., et al.
2020MNRAS.499..482N 187           X   F     3 14 ~ An outflow powers the optical rise of the nearby, fast-evolving tidal disruption event AT2019qiz. NICHOLL M., WEVERS T., OATES S.R., et al.
2020MNRAS.499.5562Z 47           X         1 13 ~ Eccentric tidal disruption event discs around supermassive black holes: dynamics and thermal emission. ZANAZZI J.J. and OGILVIE G.I.
2019ApJ...872..151M 332       D     X         8 17 ~ Weighing black holes using tidal disruption events. MOCKLER B., GUILLOCHON J. and RAMIREZ-RUIZ E.
2019ApJ...872..198V 18       D               1 13 ~ The first tidal disruption flare in ZTF: from photometric selection to multi-wavelength characterization. VAN VELZEN S., GEZARI S., CENKO S.B., et al.
2019ApJ...878...82V 600       D S   X         13 19 ~ Late-time UV observations of tidal disruption flares reveal unobscured, compact accretion disks. VAN VELZEN S., STONE N.C., METZGER B.D., et al.
2019ApJ...879..119H 45           X         1 12 ~ Discovery of highly blueshifted broad Balmer and metastable helium absorption lines in a tidal disruption event. HUNG T., CENKO S.B., ROTH N., et al.
2019ApJ...880..120H 179           X         4 14 ~ PS18kh: a new tidal disruption event with a non-axisymmetric accretion disk. HOLOIEN T.W.-S., HUBER M.E., SHAPPEE B.J., et al.
2019MNRAS.487.4136W 18       D               3 39 ~ Black hole masses of tidal disruption event host galaxies II. WEVERS T., STONE N.C., VAN VELZEN S., et al.
2019MNRAS.488.1878N 45           X         1 40 ~ The tidal disruption event AT2017eqx: spectroscopic evolution from hydrogen rich to poor suggests an atmosphere and outflow. NICHOLL M., BLANCHARD P.K., BERGER E., et al.
2019MNRAS.489.1463O 134           X C       2 21 ~ Optical follow-up of the tidal disruption event iPTF16fnl: new insights from X-shooter observations. ONORI F., CANNIZZARO G., JONKER P.G., et al.
2018ApJ...852...72V viz 105       D     X         3 18 19 On the mass and luminosity functions of tidal disruption flares: rate suppression due to black hole event horizons. VAN VELZEN S.
2018ApJ...853...39G 17       D               2 41 9 A dependence of the tidal disruption event rate on global stellar surface mass density and stellar velocity dispersion. GRAUR O., FRENCH K.D., ZAHID H.J., et al.
2018ApJ...857..109G 87               F     1 10 1 Tidal disruptions of main-sequence stars of varying mass and age: inferences from the composition of the fallback material. GALLEGOS-GARCIA M., LAW-SMITH J. and RAMIREZ-RUIZ E.
2018ApJS..238...15H 148       D     X C       3 33 6 Sifting for sapphires: systematic selection of tidal disruption events in iPTF. HUNG T., GEZARI S., CENKO S.B., et al.
2018MNRAS.473.1130B 46           X         1 8 16 The ultraviolet spectroscopic evolution of the low-luminosity tidal disruption event iPTF16fnl. BROWN J.S., KOCHANEK C.S., HOLOIEN T.W.-S., et al.
2018MNRAS.474.3307S 17       D               1 17 7 Spectral features of tidal disruption candidates and alternative origins for such transient flares. SAXTON C.J., PERETS H.B. and BASKIN A.
2018MNRAS.480.2929C 505     A     X         12 3 ~ A large accretion disc of extreme eccentricity in the TDE ASASSN-14li. CAO R., LIU F.K., ZHOU Z.Q., et al.
2018MNRAS.480.5060S 87             C       1 14 ~ The delay time distribution of tidal disruption flares. STONE N.C., GENEROZOV A., VASILIEV E., et al.
2017ApJ...835..176F 146       D     X         4 9 15 The post-starburst evolution of tidal disruption event host galaxies. FRENCH K.D., ARCAVI I. and ZABLUDOFF A.
2017ApJ...838..149A 400       D     X         10 99 40 New physical insights about tidal disruption events from a comprehensive observational inventory At X-ray wavelengths. AUCHETTL K., GUILLOCHON J. and RAMIREZ-RUIZ E.
2017ApJ...850...22L 17       D               1 23 11 Tidal disruption event host galaxies in the context of the local galaxy population. LAW-SMITH J., RAMIREZ-RUIZ E., ELLISON S.L., et al.
2017MNRAS.471.1694W 359       D     X C       8 16 20 Black hole masses of tidal disruption event host galaxies. WEVERS T., VAN VELZEN S., JONKER P.G., et al.
2017MNRAS.472L..99L 1026 T   A D S   X C F     21 1 4 Disc origin of broad optical emission lines of the TDE candidate
PTF09djl.
LIU F.K., ZHOU Z.Q., CAO R., et al.
2016A&A...596A..67R 42           X         1 60 9 SN 2012aa: A transient between Type Ibc core-collapse and superluminous supernovae. ROY R., SOLLERMAN J., SILVERMAN J.M., et al.
2016ApJ...818L..21F 145       D     X         4 15 53 Tidal disruption events prefer unusual host galaxies. FRENCH K.D., ARCAVI I. and ZABLUDOFF A.
2016ApJ...829...19V 101       D     X         3 12 16 Discovery of transient infrared emission from dust heated by stellar tidal disruption flares. VAN VELZEN S., MENDEZ A.J., KROLIK J.H., et al.
2016MNRAS.455..859S 251           X C F     4 165 110 Rates of stellar tidal disruption as probes of the supermassive black hole mass function. STONE N.C. and METZGER B.D.
2016MNRAS.455.2918H viz 48           X         1 17 111 Six months of multiwavelength follow-up of the tidal disruption candidate ASASSN-14li and implied TDE rates from ASAS-SN. HOLOIEN T.W.-S., KOCHANEK C.S., PRIETO J.L., et al.
2016MNRAS.458..127K 43           X         1 11 19 Abundance anomalies in tidal disruption events. KOCHANEK C.S.
2016MNRAS.461..371K 88             C       1 9 41 Tidal disruption event demographics. KOCHANEK C.S.
2015ApJ...806..164P 25       D               1 7 67 'Disk formation versus disk accretion–What powers tidal disruption events? PIRAN T., SVIRSKI G., KROLIK J., et al.
2014ApJ...789...23K viz 16       D               1 344 36 The host galaxies of fast-ejecta core-collapse supernovae. KELLY P.L., FILIPPENKO A.V., MODJAZ M., et al.
2014ApJ...793...38A viz 1797     A D     X C       44 15 162 A continuum of H- to He-rich tidal disruption candidates with a preference for E+A galaxies. ARCAVI I., GAL-YAM A., SULLIVAN M., et al.
2014MNRAS.445.3263H 85           X         2 26 111 ASASSN-14ae: a tidal disruption event at 200 Mpc. HOLOIEN T.W.-S., PRIETO J.L., BERSIER D., et al.
2013ApJ...773...12S 16       D               1 73 32 Probing the low-redshift star formation rate as a function of metallicity through the local environments of type II supernovae. STOLL R., PRIETO J.L., STANEK K.Z., et al.
2010ApJ...721..777A 16       D               1 82 129 Core-collapse supernovae from the Palomar transient factory: indications for a different population in dwarf galaxies. ARCAVI I., GAL-YAM A., KASLIWAL M.M., et al.

goto View the references in ADS


2021.03.06-06:17:18

© Université de Strasbourg/CNRS

    • Contact