PTF 09djl , the SIMBAD biblio

PTF 09djl , the SIMBAD biblio (60 results) C.D.S. - SIMBAD4 rel 1.8 - 2024.04.25CEST17:35:34


Sort references on where and how often the object is cited
trying to find the most relevant references on this object.
More on score
Bibcode/DOI Score in Title|Abstract|
Keywords
in a table in teXt, Caption, ... Nb occurence Nb objects in ref Citations
(from ADS)
Title First 3 Authors
2010ApJ...721..777A 15       D               1 82 160 Core-collapse supernovae from the Palomar transient factory: indications for a different population in dwarf galaxies. ARCAVI I., GAL-YAM A., KASLIWAL M.M., et al.
2013ApJ...773...12S 16       D               1 73 32 Probing the low-redshift star formation rate as a function of metallicity through the local environments of type II supernovae. STOLL R., PRIETO J.L., STANEK K.Z., et al.
2014ApJ...789...23K viz 16       D               1 344 44 The host galaxies of fast-ejecta core-collapse supernovae. KELLY P.L., FILIPPENKO A.V., MODJAZ M., et al.
2014ApJ...793...38A viz 1742     A D     X C       44 15 344 A continuum of H- to He-rich tidal disruption candidates with a preference for E+A galaxies. ARCAVI I., GAL-YAM A., SULLIVAN M., et al.
2014MNRAS.445.3263H 83           X         2 26 217 ASASSN-14ae: a tidal disruption event at 200 Mpc. HOLOIEN T.W.-S., PRIETO J.L., BERSIER D., et al.
2015ApJ...806..164P 31       D               1 7 222 'Disk formation versus disk accretion–What powers tidal disruption events? PIRAN T., SVIRSKI G., KROLIK J., et al.
2016MNRAS.455..859S 242           X C F     4 165 261 Rates of stellar tidal disruption as probes of the supermassive black hole mass function. STONE N.C. and METZGER B.D.
2016MNRAS.455.2918H viz 55           X         1 17 270 Six months of multiwavelength follow-up of the tidal disruption candidate ASASSN-14li and implied TDE rates from ASAS-SN. HOLOIEN T.W.-S., KOCHANEK C.S., PRIETO J.L., et al.
2016ApJ...818L..21F 145       D     X         4 15 149 Tidal disruption events prefer unusual host galaxies. FRENCH K.D., ARCAVI I. and ZABLUDOFF A.
2016MNRAS.458..127K 41           X         1 11 19 Abundance anomalies in tidal disruption events. KOCHANEK C.S.
2016MNRAS.461..371K 91             C       1 9 101 Tidal disruption event demographics. KOCHANEK C.S.
2016ApJ...829...19V 102       D     X         3 12 78 Discovery of transient infrared emission from dust heated by stellar tidal disruption flares. VAN VELZEN S., MENDEZ A.J., KROLIK J.H., et al.
2016A&A...596A..67R 40           X         1 60 14 SN 2012aa: A transient between Type Ibc core-collapse and superluminous supernovae. ROY R., SOLLERMAN J., SILVERMAN J.M., et al.
2017ApJ...835..176F 141       D     X         4 9 29 The post-starburst evolution of tidal disruption event host galaxies. FRENCH K.D., ARCAVI I. and ZABLUDOFF A.
2017ApJ...838..149A 383       D     X         10 99 187 New physical insights about tidal disruption events from a comprehensive observational inventory At X-ray wavelengths. AUCHETTL K., GUILLOCHON J. and RAMIREZ-RUIZ E.
2017ApJ...850...22L 19       D               1 23 72 Tidal disruption event host galaxies in the context of the local galaxy population. LAW-SMITH J., RAMIREZ-RUIZ E., ELLISON S.L., et al.
2017MNRAS.471.1694W 347       D     X C       8 16 108 Black hole masses of tidal disruption event host galaxies. WEVERS T., VAN VELZEN S., JONKER P.G., et al.
2018ApJ...852...72V viz 104       D     X         3 18 106 On the mass and luminosity functions of tidal disruption flares: rate suppression due to black hole event horizons. VAN VELZEN S.
2017MNRAS.472L..99L 1013 T   A D S   X C F     21 1 38 Disc origin of broad optical emission lines of the TDE candidate
PTF09djl.
LIU F.K., ZHOU Z.Q., CAO R., et al.
2018MNRAS.473.1130B 45           X         1 8 32 The ultraviolet spectroscopic evolution of the low-luminosity tidal disruption event iPTF16fnl. BROWN J.S., KOCHANEK C.S., HOLOIEN T.W.-S., et al.
2018ApJ...853...39G 16       D               2 41 25 A dependence of the tidal disruption event rate on global stellar surface mass density and stellar velocity dispersion. GRAUR O., FRENCH K.D., ZAHID H.J., et al.
2018MNRAS.474.3307S 16       D               1 17 13 Spectral features of tidal disruption candidates and alternative origins for such transient flares. SAXTON C.J., PERETS H.B. and BASKIN A.
2018ApJ...857..109G 83               F     1 10 12 Tidal disruptions of main-sequence stars of varying mass and age: inferences from the composition of the fallback material. GALLEGOS-GARCIA M., LAW-SMITH J. and RAMIREZ-RUIZ E.
2018ApJS..238...15H 140       D     X C       3 33 15 Sifting for sapphires: systematic selection of tidal disruption events in iPTF. HUNG T., GEZARI S., CENKO S.B., et al.
2018MNRAS.480.2929C 479     A     X         12 3 7 A large accretion disc of extreme eccentricity in the TDE ASASSN-14li. CAO R., LIU F.K., ZHOU Z.Q., et al.
2018MNRAS.480.5060S 84             C       1 14 40 The delay time distribution of tidal disruption flares. STONE N.C., GENEROZOV A., VASILIEV E., et al.
2019ApJ...872..151M 317       D     X         8 17 149 Weighing black holes using tidal disruption events. MOCKLER B., GUILLOCHON J. and RAMIREZ-RUIZ E.
2019ApJ...872..198V viz 22       D               1 13 73 The first tidal disruption flare in ZTF: from photometric selection to multi-wavelength characterization. VAN VELZEN S., GEZARI S., CENKO S.B., et al.
2019ApJ...878...82V 564       D S   X         13 19 82 Late-time UV observations of tidal disruption flares reveal unobscured, compact accretion disks. VAN VELZEN S., STONE N.C., METZGER B.D., et al.
2019MNRAS.487.4136W 18       D               3 40 71 Black hole masses of tidal disruption event host galaxies II. WEVERS T., STONE N.C., VAN VELZEN S., et al.
2019ApJ...879..119H 45           X         1 12 40 Discovery of highly blueshifted broad Balmer and metastable helium absorption lines in a tidal disruption event. HUNG T., CENKO S.B., ROTH N., et al.
2019MNRAS.488.1878N 43           X         1 39 44 The tidal disruption event AT2017eqx: spectroscopic evolution from hydrogen rich to poor suggests an atmosphere and outflow. NICHOLL M., BLANCHARD P.K., BERGER E., et al.
2019ApJ...880..120H viz 172           X         4 14 76 PS18kh: a new tidal disruption event with a non-axisymmetric accretion disk. HOLOIEN T.W.-S., HUBER M.E., SHAPPEE B.J., et al.
2019MNRAS.489.1463O 125           X C       2 21 ~ Optical follow-up of the tidal disruption event iPTF16fnl: new insights from X-shooter observations. ONORI F., CANNIZZARO G., JONKER P.G., et al.
2020ApJ...889..166J 743       D S   X         17 26 54 Implications from late-time X-ray detections of optically selected tidal disruption events: state changes, unification, and detection rates. JONKER P.G., STONE N.C., GENEROZOV A., et al.
2020ApJ...892L...1L 43           X         1 11 ~ Optical polarimetry of the tidal disruption event AT2019DSG. LEE C.-H., HUNG T., MATHESON T., et al.
2020MNRAS.498.4119S 46           X         1 9 35 The tidal disruption event AT 2018hyz - I. Double-peaked emission lines and a flat Balmer decrement. SHORT P., NICHOLL M., LAWRENCE A., et al.
2020MNRAS.499..482N 173           X   F     3 14 55 An outflow powers the optical rise of the nearby, fast-evolving tidal disruption event AT2019qiz. NICHOLL M., WEVERS T., OATES S.R., et al.
2020ApJ...903...31H viz 259           X         6 9 41 Double-peaked Balmer emission indicating prompt accretion disk formation in an X-ray faint tidal disruption event. HUNG T., FOLEY R.J., RAMIREZ-RUIZ E., et al.
2020ApJ...904...73R 231       D     X C       5 24 40 Measuring stellar and black hole masses of tidal disruption events. RYU T., KROLIK J. and PIRAN T.
2020MNRAS.499.5562Z 43           X         1 13 ~ Eccentric tidal disruption event discs around supermassive black holes: dynamics and thermal emission. ZANAZZI J.J. and OGILVIE G.I.
2021MNRAS.500L..57Z 131           X         3 5 ~ Further evidence to support a tidal disruption event in the changing-look AGN SDSS J0159. ZHANG X.-G.
2020ApJ...905L...5U 17       D               1 22 ~ Application of the wind-driven model to a sample of tidal disruption events. UNO K. and MAEDA K.
2021ApJ...906..101M 367       D     X C       8 14 15 An energy inventory of tidal disruption events. MOCKLER B. and RAMIREZ-RUIZ E.
2021ApJ...907...77Z 322       D     X         8 20 18 Measuring black hole masses from tidal disruption events and testing the MBH* relation. ZHOU Z.Q., LIU F.K., KOMOSSA S., et al.
2021ApJ...908....4V 22       D               1 35 195 Seventeen tidal disruption events from the first half of ZTF survey observations: entering a new era of population studies. VAN VELZEN S., GEZARI S., HAMMERSTEIN E., et al.
2021ApJ...908..179L 175           X         4 9 11 Elliptical accretion disk as a model for tidal disruption events. LIU F.K., CAO C.Y., ABRAMOWICZ M.A., et al.
2021ApJ...911...31J 18       D               3 26 32 Infrared echoes of optical tidal disruption events: ∼1% dust-covering factor or less at subparsec scale. JIANG N., WANG T., HU X., et al.
2022A&A...659A..34C 646       D     X C F     13 18 24 A detailed spectroscopic study of tidal disruption events. CHARALAMPOPOULOS P., LELOUDAS G., MALESANI D.B., et al.
2022MNRAS.513.2422L 90               F     1 32 9 The prospects of finding tidal disruption events with 2.5-m Wide-Field Survey Telescope based on mock observations. LIN Z., JIANG N. and KONG X.
2022ApJ...933...70L 45           X         1 11 8 The Host Galaxy and Rapidly Evolving Broad-line Region in the Changing-look Active Galactic Nucleus 1ES 1927+654. LI R., HO L.C., RICCI C., et al.
2022MNRAS.515.1146R 108       D         F     3 33 10 The bulge masses of TDE host galaxies and their scaling with black hole mass. RAMSDEN P., LANNING D., NICHOLL M., et al.
2022MNRAS.515.5604N 108       D         F     2 38 23 Systematic light-curve modelling of TDEs: statistical differences between the spectroscopic classes. NICHOLL M., LANNING D., RAMSDEN P., et al.
2022MNRAS.516L..66Z 45           X         1 16 ~ A new candidate for central tidal disruption event in SDSS J014124 + 010306 with broad Mg II line at z = 1.06. ZHANG X.-G.
2022ApJ...937L..28T 18       D               1 23 15 Dynamical Unification of Tidal Disruption Events. THOMSEN L.L., KWAN T.M., DAI L., et al.
2022MNRAS.517L..71Z 45           X         1 10 1 Modelling the flare in NGC 1097 from 1991 to 2004 as a tidal disruption event. ZHANG X.-G.
2022A&A...666A...6W 179           X C       3 14 9 An elliptical accretion disk following the tidal disruption event AT 2020zso. WEVERS T., NICHOLL M., GUOLO M., et al.
2023PASP..135c4101G 19       D               1 153 1 A Census of Archival X-Ray Spectra for Modeling Tidal Disruption Events. GOLDTOOTH A., ZABLUDOFF A.I., WEN S., et al.
2023A&A...673A..95C 187           X   F     3 26 9 AT 2020wey and the class of faint and fast tidal disruption events. CHARALAMPOPOULOS P., PURSIAINEN M., LELOUDAS G., et al.
2023ApJ...950..153F 47           X         1 19 ~ Fading AGNs in Poststarburst Galaxies. FRENCH K.D., EARL N., NOVACK A.B., et al.

goto View the references in ADS