PTF 12dam , the SIMBAD biblio

PTF 12dam , the SIMBAD biblio (160 results) C.D.S. - SIMBAD4 rel 1.8 - 2024.04.25CEST18:42:21


Sort references on where and how often the object is cited
trying to find the most relevant references on this object.
More on score
Bibcode/DOI Score in Title|Abstract|
Keywords
in a table in teXt, Caption, ... Nb occurence Nb objects in ref Citations
(from ADS)
Title First 3 Authors
2013ApJ...771..136L 94       D       C       2 23 37 Superluminous x-rays from a superluminous supernova. LEVAN A.J., READ A.M., METZGER B.D., et al.
2013ApJ...778..168K 234           X C       5 8 3 A plausible (Overlooked) super-luminous supernova in the Sloan Digital Sky Survey Stripe 82 data. KOSTRZEWA-RUTKOWSKA Z., KOZLOWSKI S., WYRZYKOWSKI L., et al.
2014MNRAS.437..656M viz 1575     A D     X C       40 19 62 The superluminous supernova PS1-11ap: bridging the gap between low and high redshift. McCRUM M., SMARTT S.J., KOTAK R., et al.
2014MNRAS.437.3848L 40           X         1 42 84 Bolometric corrections for optical light curves of core-collapse supernovae. LYMAN J.D., BERSIER D. and JAMES P.A.
2014MNRAS.438.3119Y 40           X         1 7 18 Type Ic core-collapse supernova explosions evolved from very massive stars. YOSHIDA T., OKITA S. and UMEDA H.
2013Natur.502..346N 18 6 221 Slowly fading super-luminous supernovae that are not pair-instability explosions. NICHOLL M., SMARTT S.J., JERKSTRAND A., et al.
2014ApJ...787..138L 373       D     X C       9 32 225 Hydrogen-poor superluminous supernovae and long-duration gamma-ray bursts have similar host galaxies. LUNNAN R., CHORNOCK R., BERGER E., et al.
2014ApJ...795..142G viz 16       D               1 448 7 Defining photometric peculiar type Ia supernovae. GONZALEZ-GAITAN S., HSIAO E.Y., PIGNATA G., et al.
2014ApJ...796...87I 371       D     X         10 28 79 Superluminous supernovae as standardizable candles and high-redshift distance probes. INSERRA C. and SMARTT S.J.
2014MNRAS.444.2096N 333       D     X C       8 17 135 Superluminous supernovae from PESSTO. NICHOLL M., SMARTT S.J., JERKSTRAND A., et al.
2015ApJ...798...12V 120           X         3 19 63 A luminous, fast rising UV-transient discovered by ROTSE: a tidal disruption event? VINKO J., YUAN F., QUIMBY R.M., et al.
2015ApJ...799..107W 160           X C       3 15 47 Superluminous supernovae powered by magnetars: late-time light curves and hard emission leakage. WANG S.Q., WANG L.J., DAI Z.G., et al.
2015MNRAS.448.1206M viz 770       D     X C       19 272 59 Selecting superluminous supernovae in faint galaxies from the first year of the Pan-STARRS1 Medium Deep Survey. McCRUM M., SMARTT S.J., REST A., et al.
2012ATel.4121....1Q 195 T         X         4 2 9 Discovery of a super-luminous supernova, PTF 12dam. QUIMBY R.M., ARCAVI I., STERNBERG A., et al.
2015MNRAS.449..917L 216       D     X         6 29 173 Spectroscopy of superluminous supernova host galaxies. A preference of hydrogen-poor events for extreme emission line galaxies. LELOUDAS G., SCHULZE S., KRUHLER T., et al.
2015AstL...41...95B 2 3 16 Hydrogenless superluminous supernova PTF12dam in the model of an explosion inside an extended envelope. BAKLANOV P.V., SOROKINA E.I. and BLINNIKOV S.I.
2015MNRAS.451L..65T 681 T K A D     X   F     16 2 27 A young stellar environment for the superluminous supernova
PTF12dam.
THONE C.C., DE UGARTE POSTIGO A., GARCIA-BENITO R., et al.
2015ApJ...807L..18N 361     A D     X C       9 12 99 LSQ14bdq: a type IC super-luminous supernova with a double-peaked light curve. NICHOLL M., SMARTT S.J., JERKSTRAND A., et al.
2015MNRAS.452.1567C 4568 T K A D S   X C       113 23 78 The host galaxy and late-time evolution of the superluminous supernova
PTF12dam.
CHEN T.-W., SMARTT S.J., JERKSTRAND A., et al.
2015MNRAS.452.3869N 454       D     X         12 55 156 On the diversity of superluminous supernovae: ejected mass as the dominant factor. NICHOLL M., SMARTT S.J., JERKSTRAND A., et al.
2015ApJ...814..108Y 361   K       X C       8 9 72 Detection of broad Hα emission lines in the late-time spectra of a hydrogen-poor superluminous supernova. YAN L., QUIMBY R., OFEK E., et al.
2015MNRAS.454.4357K 779   K A     X C       19 5 19 Can pair-instability supernova models match the observations of superluminous supernovae? KOZYREVA A. and BLINNIKOV S.
2014ATel.5718....1L 39           X         1 9 6 PESSTO spectroscopic classification of optical transients. LEGET P.-F., LE GUILLOU L., FLEURY M., et al.
2016Sci...351..257D 94           X         2 12 172 ASASSN-15lh: A highly super-luminous supernova. DONG S., SHAPPEE B.J., PRIETO J.L., et al.
2016ApJ...817..132D 45           X         1 10 52 The most luminous supernova ASASSN-15lh: signature of a newborn rapidly rotating strange quark star. DAI Z.G., WANG S.Q., WANG J.S., et al.
2016MNRAS.455.3207J 991   K A S   X C F     22 9 36 Nebular spectra of pair-instability supernovae. JERKSTRAND A., SMARTT S.J. and HEGER A.
2016ApJ...818L...8S 47           X         1 7 51 DES14X3taz: a Type I superluminous supernova showing a luminous, rapidly cooling initial pre-peak bump. SMITH M., SULLIVAN M., D'ANDREA C.B., et al.
2016ApJ...819...51L 81             C       1 18 25 Late time multi-wavelength observations of Swift J1644+5734: a luminous Optical/IR bump and quiescent X-ray emission. LEVAN A.J., TANVIR N.R., BROWN G.C., et al.
2015ATel.7102....1L 40           X         1 10 6 PESSTO spectroscopic classification of optical transients. LE GUILLOU L., MITRA A., BAUMONT S., et al.
2015ATel.7209....1F 40           X         1 6 6 PESSTO spectroscopic classification of optical transients. FRASER M., SMITH M., FIRTH R., et al.
2016MNRAS.458...84A viz 40           X         1 127 46 A Hubble Space Telescope survey of the host galaxies of Superluminous Supernovae. ANGUS C.R., LEVAN A.J., PERLEY D.A., et al.
2016ApJ...826...39N 1372           X C       33 18 133 SN 2015BN: a detailed multi-wavelength view of a nearby superluminous supernova. NICHOLL M., BERGER E., SMARTT S.J., et al.
2016MNRAS.460L..55M 16       D               1 23 10 Constraining the ellipticity of strongly magnetized neutron stars powering superluminous supernovae. MORIYA T.J. and TAURIS T.M.
2016MNRAS.460.3232C 16       D               1 128 5 Physical conditions and element abundances in supernova and γ-ray burst host galaxies at different redshifts. CONTINI M.
2016ApJ...828L..18N 89           X         2 9 85 Superluminous supernova SN 2015bn in the nebular phase: evidence for the engine-powered explosion of a stripped massive star. NICHOLL M., BERGER E., MARGUTTI R., et al.
2016A&A...593A.115J 16       D               1 31 11 Taking stock of superluminous supernovae and long gamma-ray burst host galaxy comparison using a complete sample of LGRBs. JAPELJ J., VERGANI S.D., SALVATERRA R., et al.
2016ApJ...830...13P viz 783       D     X C       19 42 174 Host-galaxy properties of 32 low-redshift superluminous supernovae from the Palomar transient factory. PERLEY D.A., QUIMBY R.M., YAN L., et al.
2016ApJ...831...79I 44           X         1 11 49 Spectropolarimetry of superluminous supernovae: insight into their geometry. INSERRA C., BULLA M., SIM S.A., et al.
2016ApJ...831..144L 445           X C       10 14 54 PS1-14bj: a hydrogen-poor superluminous supernova with a long rise and slow decay. LUNNAN R., CHORNOCK R., BERGER E., et al.
2016MNRAS.463..296L viz 16       D               1 105 28 Slow-blue nuclear hypervariables in PanSTARRS-1. LAWRENCE A., BRUCE A.G., MacLEOD C., et al.
2017ApJ...835L...8N 286           X   F     6 13 38 An ultraviolet excess in the superluminous supernova Gaia16apd reveals a powerful central engine. NICHOLL M., BERGER E., MARGUTTI R., et al.
2017ApJ...835...13J 85           X         2 22 99 Long-duration superluminous supernovae at late times. JERKSTRAND A., SMARTT S.J., INSERRA C., et al.
2017ApJ...835...58V viz 4023   K A D S   X C       98 14 40 On the early-time excess emission in hydrogen-poor superluminous supernovae. VREESWIJK P.M., LELOUDAS G., GAL-YAM A., et al.
2016A&A...596A..67R 642           X C       15 60 14 SN 2012aa: A transient between Type Ibc core-collapse and superluminous supernovae. ROY R., SOLLERMAN J., SILVERMAN J.M., et al.
2017ApJ...835..177M 42           X         1 7 11 Properties of magnetars mimicking 56Ni-powered light curves in Type Ic superluminous supernovae. MORIYA T.J., CHEN T.-W. and LANGER N.
2017ApJ...835..266T 1265 T K A D     X C       30 2 12 Pulsational pair-instability model for superluminous supernova
PTF12dam: interaction and radioactive decay.
TOLSTOV A., NOMOTO K., BLINNIKOV S., et al.
2016MNRAS.463.2972N 40           X         1 8 6 Type Ia supernovae within dense carbon- and oxygen-rich envelopes: a model for 'Super-Chandrasekhar' explosions? NOEBAUER U.M., TAUBENBERGER S., BLINNIKOV S., et al.
2017MNRAS.466.1428G 165           X         4 11 38 The unexpected, long-lasting, UV rebrightening of the superluminous supernova ASASSN-15lh. GODOY-RIVERA D., STANEK K.Z., KOCHANEK C.S., et al.
2017MNRAS.464.2854K 1025   K   S   X C F     22 4 43 Fast evolving pair-instability supernova models: evolution, explosion, light curves. KOZYREVA A., GILMER M., HIRSCHI R., et al.
2017MNRAS.464.3568P 17       D               2 25 46 The volumetric rate of superluminous supernovae at z ∼ 1. PRAJS S., SULLIVAN M., SMITH M., et al.
2017ApJ...840...12Y 139       D     X         4 38 51 A statistical study of superluminous supernovae using the magnetar engine model and implications for their connection with gamma-ray bursts and hypernovae. YU Y.-W., ZHU J.-P., LI S.-Z., et al.
2017ApJ...840...57Y 163           X         4 22 38 Far-ultraviolet to near-infrared spectroscopy of a nearby hydrogen-poor superluminous supernova Gaia16apd. YAN L., QUIMBY R., GAL-YAM A., et al.
2017ApJ...842...26L 382       D     X C       9 26 23 A Monte Carlo approach to magnetar-powered transients. I. Hydrogen-deficient superluminous supernovae. LIU L.-D., WANG S.-Q., WANG L.-J., et al.
2017A&A...602A...9C 285           X         7 25 37 The evolution of superluminous supernova LSQ14mo and its interacting host galaxy system. CHEN T.-W., NICHOLL M., SMARTT S.J., et al.
2017MNRAS.468.4642I 1325   K A     X C F     31 35 37 Complexity in the light curves and spectra of slow-evolving superluminous supernovae. INSERRA C., NICHOLL M., CHEN T.-W., et al.
2017MNRAS.469.1246K 936           X C       22 13 36 Gaia16apd - a link between fast and slowly declining type I superluminous supernovae. KANGAS T., BLAGORODNOVA N., MATTILA S., et al.
2017ApJ...845L...2T 245           X         6 6 6 Ultraviolet light curves of Gaia16apd in superluminous supernova models. TOLSTOV A., ZHIGLO A., NOMOTO K., et al.
2017ApJ...845...85L viz 180       D     X         5 47 77 Analyzing the largest spectroscopic data set of hydrogen-poor super-luminous supernovae. LIU Y.-Q., MODJAZ M. and BIANCO F.B.
2017MNRAS.469.4705C 2032 T K A D S   X C       48 6 6 Spatially resolved analysis of superluminous supernovae PTF 11hrq and
PTF 12dam host galaxies.
CIKOTA A., DE CIA A., SCHULZE S., et al.
2017ApJ...846..100G 83           X         2 6 14 Pair-instability supernova simulations: progenitor evolution, explosion, and light curves. GILMER M.S., KOZYREVA A., HIRSCHI R., et al.
2017MNRAS.470.3566C 424       D     X   F     10 22 54 Superluminous supernova progenitors have a half-solar metallicity threshold. CHEN T.-W., SMARTT S.J., YATES R.M., et al.
2017ApJ...848....6Y 165           X C       3 23 91 Hydrogen-poor superluminous supernovae with late-time Hα emission: three events from the intermediate Palomar Transient Factory. YAN L., LUNNAN R., PERLEY D.A., et al.
2017ApJ...849L...4C 58       D     X         2 10 19 Spatially resolved MaNGA observations of the host galaxy of superluminous supernova 2017egm. CHEN T.-W., SCHADY P., XIAO L., et al.
2017ApJ...850...55N 183       D     X C       4 41 176 The magnetar model for Type I superluminous supernovae. I. Bayesian analysis of the full multicolor light-curve sample with MOSFiT. NICHOLL M., GUILLOCHON J. and BERGER E.
2017ApJ...851...95S 17       D               1 24 24 Magnetar-powered superluminous supernovae must first be exploded by jets. SOKER N. and GILKIS A.
2018ApJ...852...81L viz 43           X         1 32 93 Hydrogen-poor superluminous supernovae from the Pan-STARRS1 Medium Deep Survey. LUNNAN R., CHORNOCK R., BERGER E., et al.
2018MNRAS.473.1258S 470       D     X   F     11 75 131 Cosmic evolution and metal aversion in superluminous supernova host galaxies. SCHULZE S., KRUHLER T., LELOUDAS G., et al.
2018ApJ...853...57B 208           X C       4 27 66 Gaia17biu/SN 2017egm in NGC 3191: the closest hydrogen-poor superluminous supernova to date is in a "normal," massive, metal-rich spiral galaxy. BOSE S., DONG S., PASTORELLO A., et al.
2018ApJ...854..175I 99       D       C       2 48 19 A statistical approach to identify superluminous supernovae and probe their diversity. INSERRA C., PRAJS S., GUTIERREZ C.P., et al.
2018ApJ...855....2Q 4775     A D     X C       116 63 93 Spectra of hydrogen-poor superluminous supernovae from the Palomar Transient Factory. QUIMBY R.M., DE CIA A., GAL-YAM A., et al.
2018A&A...610A..11I 42           X         1 8 13 The host of the Type I SLSN 2017egm. A young, sub-solar metallicity environment in a massive spiral galaxy. IZZO L., THONE C.C., GARCIA-BENITO R., et al.
2018ApJ...856...56C 42           X         1 26 32 Jets in hydrogen-poor superluminous supernovae: constraints from a comprehensive analysis of radio observations. COPPEJANS D.L., MARGUTTI R., GUIDORZI C., et al.
2018MNRAS.475.2659M 47           X         1 10 61 The GRB-SLSN connection: misaligned magnetars, weak jet emergence, and observational signatures. MARGALIT B., METZGER B.D., THOMPSON T.A., et al.
2016ATel.9074....1B 40           X         1 3 2 Swift/UVOT Observations for SLSN-I Gaia16apd. BLAGORODNOVA N., YAN L., QUIMBY R., et al.
2018ApJ...857...72H 305       D     X C       7 12 5 Obscured star formation in the host galaxies of superluminous supernovae. HATSUKADE B., TOMINAGA N., HAYASHI M., et al.
2018A&A...611A..45R 148     A     X         4 47 13 Search for γ-ray emission from superluminous supernovae with the Fermi-LAT. RENAULT-TINACCI N., KOTERA K., NERONOV A., et al.
2018ApJ...858...91Y 865   K A D     X         22 9 10 Far-UV HST spectroscopy of an unusual hydrogen-poor superluminous supernova: SN2017egm. YAN L., PERLEY D.A., DE CIA A., et al.
2018ApJ...860..100D viz 1171       D     X C       28 41 119 Light curves of hydrogen-poor superluminous supernovae from the Palomar Transient Factory. DE CIA A., GAL-YAM A., RUBIN A., et al.
2018MNRAS.478..110S 453           X C       10 16 6 Broad-band emission properties of central engine-powered supernova ejecta interacting with a circumstellar medium. SUZUKI A. and MAEDA K.
2018ApJ...864...45M viz 1359     A D S   X C       32 37 58 Results from a systematic survey of X-ray emission from hydrogen-poor superluminous SNe. MARGUTTI R., CHORNOCK R., METZGER B.D., et al.
2018ApJ...865....9B 288           X C       6 18 9 The Type I superluminous supernova PS16aqv: lightcurve complexity and deep limits on radioactive ejecta in a fast event. BLANCHARD P.K., NICHOLL M., BERGER E., et al.
2018MNRAS.479.4984C 41           X         1 10 1 Testing the magnetar scenario for superluminous supernovae with circular polarimetry. CIKOTA A., LELOUDAS G., BULLA M., et al.
2018NatAs...2..887L 1 14 14 A UV resonance line echo from a shell around a hydrogen-poor superluminous supernova. LUNNAN R., FRANSSON C., VREESWIJK P.M., et al.
2018ApJ...867..113M 16       D               2 37 11 Systematic investigation of the fallback accretion-powered model for hydrogen-poor superluminous supernovae. MORIYA T.J., NICHOLL M. and GUILLOCHON J.
2018ApJ...868L..24L 123           X C       2 7 4 Photospheric radius evolution of homologous explosions. LIU L.-D., ZHANG B., WANG L.-J., et al.
2018MNRAS.481.2407M 295           X C F     5 9 70 Unveiling the engines of fast radio bursts, superluminous supernovae, and gamma-ray bursts. MARGALIT B., METZGER B.D., BERGER E., et al.
2018ApJ...869..166V 16       D               1 58 6 Superluminous supernovae in LSST: rates, detection metrics, and light-curve modeling. VILLAR V.A., NICHOLL M. and BERGER E.
2018A&A...620A..67A 248           X C       5 25 36 A nearby super-luminous supernova with a long pre-maximum & "plateau" and strong C II features. ANDERSON J.P., PESSI P.J., DESSART L., et al.
2019ApJ...871..102N 437       D S   X C       9 20 55 Nebular-phase spectra of superluminous supernovae: physical insights from observational and statistical properties. NICHOLL M., BERGER E., BLANCHARD P.K., et al.
2019MNRAS.482.1545S viz 100       D         F     2 320 54 The Berkeley sample of stripped-envelope supernovae. SHIVVERS I., FILIPPENKO A.V., SILVERMAN J.M., et al.
2019A&A...621A.141D 462           X C       10 16 33 Simulations of light curves and spectra for superluminous Type Ic supernovae powered by magnetars. DESSART L.
2019MNRAS.484.3443M 42           X         1 7 1 Synthetic spectra of energetic core-collapse supernovae and the early spectra of SN 2007bi and SN 1999as. MORIYA T.J., MAZZALI P.A. and TANAKA M.
2019MNRAS.484.3451M 42           X         1 7 2 The nature of PISN candidates: clues from nebular spectra. MAZZALI P.A., MORIYA T.J., TANAKA M., et al.
2019ApJ...874...68C 59       D     X         2 32 1 A systematic study of superluminous supernova light-curve models using clustering. CHATZOPOULOS E. and TUMINELLO R.
2019A&A...624A.143K 252           X C       5 64 71 Highly luminous supernovae associated with gamma-ray bursts. I. GRB 111209A/SN 2011kl in the context of stripped-envelope and superluminous supernovae. KANN D.A., SCHADY P., OLIVARES F.E., et al.
2019RAA....19...63W 251           X         6 28 3 The Energy Sources of Superluminous Supernovae. WANG S.-Q., WANG L.-J. and DAI Z.-G.
2019ApJ...882..102G 460           X C       10 11 ~ A simple analysis of Type I superluminous supernova peak spectra: composition, expansion velocities, and dynamics. GAL-YAM A.
2018ATel11674....1A 41           X         1 3 ~ ePESSTO reclassification of SN2018bsz as the lowest redshift SLSN to date. ANDERSON J.P., DESSART L., PESSI P., et al.
2019ApJ...887...72L 213           X         5 17 76 Pulsational pair-instability supernovae. I. Pre-collapse evolution and pulsational mass ejection. LEUNG S.-C., NOMOTO K. and BLINNIKOV S.
2018ATel11714....1B 41           X         1 2 ~ Classification of AT2018bym as a Type I Superluminous Supernova. BLANCHARD P., GOMEZ S., BERGER E., et al.
2019ApJ...887..169H viz 169           X C       3 23 59 Evidence for late-stage eruptive mass loss in the progenitor to SN2018gep, a broad-lined IC supernova: pre-explosion emission and a rapidly rising luminous transient. HO A.Y.Q., GOLDSTEIN D.A., SCHULZE S., et al.
2020ApJ...889...75L 43           X         1 6 ~ Pulsational Pair-instability supernovae. II. Neutrino signals from pulsations and their detection by terrestrial neutrino detectors. LEUNG S.-C., BLINNIKOV S., ISHIDOSHIRO K., et al.
2020ApJ...890...51E 106           X         2 6 127 The explosion of helium stars evolved with mass loss. ERTL T., WOOSLEY S.E., SUKHBOLD T., et al.
2020A&A...634A.107Y 17       D               2 144 39 Present-day mass-metallicity relation for galaxies using a new electron temperature method. YATES R.M., SCHADY P., CHEN T.-W., et al.
2020ApJ...891...98L 85           X         2 16 ~ The energy sources of double-peaked superluminous supernova PS1-12cil and luminous supernova SN 2012aa. LI L., WANG S.-Q., LIU L.-D., et al.
2020ApJ...892...28K 2299     A D     X C       54 20 ~ SN 2010kd: photometric and spectroscopic analysis of a slow-decaying superluminous supernova. KUMAR A., PANDEY S.B., KONYVES-TOTH R., et al.
2020MNRAS.493.5170H 358       D     X         9 17 ~ Observing superluminous supernovae and long gamma-ray bursts as potential birthplaces of repeating fast radio bursts. HILMARSSON G.H., SPITLER L.G., KEANE E.F., et al.
2020ApJ...897..114B 17       D               1 67 ~ The pre-explosion mass distribution of hydrogen-poor superluminous supernova progenitors and new evidence for a mass-spin correlation. BLANCHARD P.K., BERGER E., NICHOLL M., et al.
2020MNRAS.497..318L 1149           X C F     25 15 ~ SN 2018hti: a nearby superluminous supernova discovered in a metal-poor galaxy. LIN W.L., WANG X.F., LI W.X., et al.
2020A&A...640A..56R 133           X         3 9 51 Predictions for the hydrogen-free ejecta of pulsational pair-instability supernovae. RENZO M., FARMER R., JUSTHAM S., et al.
2020ApJ...901...61L viz 129           X         3 27 32 Four (super)luminous supernovae from the first months of the ZTF survey. LUNNAN R., YAN L., PERLEY D.A., et al.
2020ApJ...902L...8Y viz 171           X C       3 13 17 Helium-rich superluminous supernovae from the Zwicky Transient Facility. YAN L., PERLEY D.A., SCHULZE S., et al.
2020ApJ...903...66L 43           X         1 3 ~ A model for the fast blue optical transient AT2018cow: circumstellar interaction of a pulsational pair-instability supernova. LEUNG S.-C., BLINNIKOV S., NOMOTO K., et al.
2020ApJ...904...74G 17       D               1 145 ~ FLEET: a redshift-agnostic machine learning pipeline to rapidly identify hydrogen-poor superluminous supernovae. GOMEZ S., BERGER E., BLANCHARD P.K., et al.
2020A&A...643A..47O 60       D     X         2 93 ~ The interacting nature of dwarf galaxies hosting superluminous supernovae. ORUM S.V., IVENS D.L., STRANDBERG P., et al.
2021MNRAS.500.5142F 17       D               2 113 29 From core collapse to superluminous: the rates of massive stellar explosions from the Palomar Transient Factory. FROHMAIER C., ANGUS C.R., VINCENZI M., et al.
2021ApJ...909...24K 104       D     X         3 93 ~ Photospheric velocity gradients and ejecta masses of hydrogen-poor superluminous supernovae: proxies for distinguishing between fast and slow events. KONYVES-TOTH R. and VINKO J.
2021MNRAS.502.1678K 810     A     X C       18 51 12 SN 2020ank: a bright and fast-evolving H-deficient superluminous supernova. KUMAR A., KUMAR B., PANDEY S.B., et al.
2021MNRAS.502.2120F 148       D     X C       3 23 16 SN 2017gci: a nearby Type I Superluminous Supernova with a bumpy tail. FIORE A., CHEN T.-W., JERKSTRAND A., et al.
2021ApJ...912...21E 783     A D S   X C       17 125 18 Late-time radio and millimeter observations of superluminous supernovae and long gamma-ray bursts: implications for central engines, fast radio bursts, and obscured star formation. EFTEKHARI T., MARGALIT B., OMAND C.M.B., et al.
2021ApJ...914L...2L 61       D     X         2 5 ~ Supernova luminosity powered by magnetar-disk system. LIN W., WANG X., WANG L., et al.
2021ApJ...914L..19Z 96             C       1 2 18 Thermonuclear explosions and accretion-induced collapses of white dwarfs in active galactic nucleus accretion disks. ZHU J.-P., YANG Y.-P., ZHANG B., et al.
2018ATel11969....1C 41           X         1 12 ~ ePESSTO spectroscopic classification of optical transients CALLIS E., KOSTRZEWA-RUTKOWSKA Z., FRASER M., et al.
2021ApJ...915...80L 45           X         1 12 19 Fast blue optical transients due to circumstellar interaction and the mysterious supernova SN 2018gep. LEUNG S.-C., FULLER J. and NOMOTO K.
2021ApJS..255...29S viz 17       D               1 893 63 The Palomar Transient Factory core-collapse supernova host-galaxy sample. I. Host-galaxy distribution functions and environment dependence of core-collapse supernovae. SCHULZE S., YARON O., SOLLERMAN J., et al.
2018ATel12300....1P 41           X         1 5 ~ ePESSTO spectroscopic classification of optical transients. PURSIAINEN M., CASTRO-SEGURA N., SMITH M., et al.
2021MNRAS.506.4819P 87           X         2 21 3 SN 2019hcc: a Type II supernova displaying early O II lines. PARRAG E., INSERRA C., SCHULZE S., et al.
2021MNRAS.507.1229P 366       D     X C F     7 39 18 Photometric, polarimetric, and spectroscopic studies of the luminous, slow-decaying Type Ib SN 2012au. PANDEY S.B., KUMAR A., KUMAR B., et al.
2021MNRAS.508.4342P 44           X         1 26 6 Transitional events in the spectrophotometric regime between stripped envelope and superluminous supernovae. PRENTICE S.J., INSERRA C., SCHULZE S., et al.
2021ApJ...921...64B 44           X         1 8 ~ Late-time Hubble Space Telescope observations of a hydrogen-poor superluminous supernova reveal the power-law decline of a magnetar central engine. BLANCHARD P.K., BERGER E., NICHOLL M., et al.
2021ApJ...922...17H 931       D     X C       21 40 2 A VLA survey of late-time radio emission from superluminous supernovae and the host galaxies. HATSUKADE B., TOMINAGA N., MOROKUMA T., et al.
2019ATel12604....1C 42           X         1 5 ~ GREAT followup of SN 2019cca/ZTF19aajwogx: a superluminous supernova at redshift 0.42. CHEN T.-W., SCHWEYER T., INSERRA C., et al.
2022MNRAS.511.5948P 269   K       X C       5 22 5 Post maximum light and late time optical imaging polarimetry of type I superluminous supernova 2020znr. POIDEVIN F., OMAND C.M.B., PEREZ-FOURNON I., et al.
2022ApJ...928...77L 224           X C       4 69 ~ Using the Optical-NIR Spectral Energy Distributions to Search for the Evidence of Dust Formation of 66 Supernovae. LI J.-Y., WANG S.-Q., GAN W.-P., et al.
2022ApJ...931...32Y 179           X C       3 4 ~ Optical Observations and Modeling of the Superluminous Supernova 2018lfe. YIN Y., GOMEZ S., BERGER E., et al.
2022ApJ...931..153S 63       D     X         2 84 5 Constraints on the Explosion Timescale of Core-collapse Supernovae Based on Systematic Analysis of Light Curves. SAITO S., TANAKA M., SAWADA R., et al.
2022MNRAS.514.5686P 152       D     X         4 87 9 Oxygen and calcium nebular emission line relationships in core-collapse supernovae and Ca-rich transients. PRENTICE S.J., MAGUIRE K., SIEBENALER L., et al.
2022ApJ...933...14H 18       D               1 35 28 Bumpy Declining Light Curves Are Common in Hydrogen-poor Superluminous Supernovae. HOSSEINZADEH G., BERGER E., METZGER B.D., et al.
2022ApJ...933..102W 90           X         2 4 3 iPTF14hls in the Circumstellar Medium Interaction Model: A Promising Candidate for a Pulsational Pair-instability Supernova. WANG L.-J., LIU L.-D., LIN W.-L., et al.
2022MNRAS.517.2056G 421       D     X C F     8 30 9 SN 2020wnt: a slow-evolving carbon-rich superluminous supernova with no O II lines and a bumpy light curve. GUTIERREZ C.P., PASTORELLO A., BERSTEN M., et al.
2022A&A...666A..30P 493           X C       10 43 14 SN 2018bsz: A Type I superluminous supernova with aspherical circumstellar material. PURSIAINEN M., LELOUDAS G., PARASKEVA E., et al.
2022ApJ...940...69K 197       D     X         5 32 2 Premaximum Spectroscopic Diversity of Hydrogen-poor Superluminous Supernovae. KONYVES-TOTH R.
2022A&A...667A..92O 242       D     X C F     4 25 2 Supernova double-peaked light curves from double-nickel distribution. ORELLANA M. and BERSTEN M.C.
2022ApJ...941L..16A 45           X         1 5 ~ Hard X-Ray Observations of the Hydrogen-poor Superluminous Supernova SN 2018hti with NuSTAR. ANDREONI I., LU W., GREFENSTETTE B., et al.
2022ApJ...941..107G 45           X         1 238 16 Luminous Supernovae: Unveiling a Population between Superluminous and Normal Core-collapse Supernovae. GOMEZ S., BERGER E., NICHOLL M., et al.
2023ApJ...943...12M 47           X         1 5 1 Light Curves and Event Rates of Axion Instability Supernovae. MORI K., MORIYA T.J., TAKIWAKI T., et al.
2023ApJ...943...41C 19       D               8 71 17 The Hydrogen-poor Superluminous Supernovae from the Zwicky Transient Facility Phase I Survey. I. Light Curves and Measurements. CHEN Z.H., YAN L., KANGAS T., et al.
2023ApJ...943...42C 93           X         2 55 22 The Hydrogen-poor Superluminous Supernovae from the Zwicky Transient Facility Phase I Survey. II. Light-curve Modeling and Characterization of Undulations. CHEN Z.H., YAN L., KANGAS T., et al.
2023MNRAS.521.5418P 327           X C F     5 21 3 Optical polarization and spectral properties of the hydrogen-poor superluminous supernovae SN 2021bnw and SN 2021fpl. POIDEVIN F., OMAND C.M.B., KONYVES-TOTH R., et al.
2023ApJ...948L..19S 47           X         1 22 1 Scary Barbie: An Extremely Energetic, Long-duration Tidal Disruption Event Candidate without a Detected Host Galaxy at z = 0.995. SUBRAYAN B.M., MILISAVLJEVIC D., CHORNOCK R., et al.
2023ApJ...949...23Z 280           X C       5 17 2 SN 2017egm: A Helium-rich Superluminous Supernova with Multiple Bumps in the Light Curves. ZHU J., JIANG N., DONG S., et al.
2023A&A...673A.107O 47           X         1 14 6 Toward nebular spectral modeling of magnetar-powered supernovae. OMAND C.M.B. and JERKSTRAND A.
2023ApJ...951...34T 140           X C       2 19 3 Supernova 2020wnt: An Atypical Superluminous Supernova with a Hidden Central Engine. TINYANONT S., WOOSLEY S.E., TAGGART K., et al.
2023NatAs...7..779L 187           X         4 16 ~ A superluminous supernova lightened by collisions with pulsational pair-instability shells. LIN W., WANG X., YAN L., et al.
2023ApJ...954...44K 905       D     X C       19 29 ~ Type W and Type 15bn Subgroups of Hydrogen-poor Superluminous Supernovae: Premaximum Diversity, Postmaximum Homogeneity? KONYVES-TOTH R. and SELI B.
2023A&A...677A..28P viz 47           X         1 87 ~ A characterization of ASAS-SN core-collapse supernova environments with VLT+MUSE I. Sample selection, analysis of local environments, and correlations with light curve properties. PESSI T., PRIETO J.L., ANDERSON J.P., et al.
2023MNRAS.526.1822K 812       D     X C F     16 31 ~ Reduction of supernova light curves by vector Gaussian processes. KORNILOV M.V., SEMENIKHIN T.A. and PRUZHINSKAYA M.V.
2023MNRAS.526.4130H 47           X         1 11 ~ Pulsational pair-instability supernovae in gravitational-wave and electromagnetic transients. HENDRIKS D.D., VAN SON L.A.C., RENZO M., et al.
2024ApJ...961..169H 120       D     X         3 110 ~ An Extensive Hubble Space Telescope Study of the Offset and Host Light Distributions of Type I Superluminous Supernovae. HSU B., BLANCHARD P.K., BERGER E., et al.
2024A&A...683A.223S viz 1020       D     X C F     19 28 ~ 1100 days in the life of the supernova 2018ibb The best pair-instability supernova candidate, to date. SCHULZE S., FRANSSON C., KOZYREVA A., et al.

goto View the references in ADSLimited to 100