QSO J0148+0600 , the SIMBAD biblio

QSO J0148+0600 , the SIMBAD biblio (59 results) C.D.S. - SIMBAD4 rel 1.8 - 2024.04.20CEST00:41:32


Sort references on where and how often the object is cited
trying to find the most relevant references on this object.
More on score
Bibcode/DOI Score in Title|Abstract|
Keywords
in a table in teXt, Caption, ... Nb occurence Nb objects in ref Citations
(from ADS)
Title First 3 Authors
2012MNRAS.419..390M 117           X   F     2 12 32 Probabilistic selection of high-redshift quasars. MORTLOCK D.J., PATEL M., WARREN S.J., et al.
2014AJ....148...14B 95       D     X         3 44 128 Discovery of eight z ∼ 6 quasars from Pan-STARRS1. BANADOS E., VENEMANS B.P., MORGANSON E., et al.
2015MNRAS.447..499M 102       D     X         3 23 349 Model-independent evidence in favour of an end to reionization by z ∼ 6. McGREER I.D., MESINGER A. and D'ODORICO V.
2015MNRAS.447.3402B 1397     A D S   X C F     33 22 312 Evidence of patchy hydrogen reionization from an extreme Lyα trough below redshift six. BECKER G.D., BOLTON J.S., MADAU P., et al.
2015ApJ...804..118B 40           X         1 56 88 Constraining the radio-loud fraction of quasars at z > 5.5. BANADOS E., VENEMANS B.P., MORGANSON E., et al.
2015AJ....149..188J 254       D     X         7 16 29 Discovery of eight z ∼ 6 quasars in the Sloan Digital Sky Survey overlap regions. JIANG L., McGREER I.D., FAN X., et al.
2015MNRAS.453.2943C 50           X         1 3 62 Calibrating cosmological radiative transfer simulations with Ly α forest data: evidence for large spatial UV background fluctuations at z ∼ 5.6-5.8 due to rare bright sources. CHARDIN J., HAEHNELT M.G., AUBERT D., et al.
2016ApJ...819...24W viz 16       D               1 796 79 A survey of luminous high-redshift quasars with SDSS and WISE. I. Target selection and optical spectroscopy. WANG F., WU X.-B., FAN X., et al.
2016MNRAS.460.1328D 142           X         1 1 102 Large fluctuations in the hydrogen-ionizing background and mean free path following the epoch of reionization. DAVIES F.B. and FURLANETTO S.R.
2016ApJ...833..222J 20       D               1 52 233 The final SDSS high-redshift quasar sample of 52 quasars at z>5.7. JIANG L., McGREER I.D., FAN X., et al.
2017ApJ...840...24E 19       D               6 35 121 Implications of z ∼ 6 quasar proximity zones for the epoch of reionization and quasar lifetimes. EILERS A.-C., DAVIES F.B., HENNAWI J.F., et al.
2017MNRAS.465.3429C 444     A     X C       9 1 54 Large-scale opacity fluctuations in the Lyα forest: evidence for QSOs dominating the ionizing UV background at z ∼ 5.5-6? CHARDIN J., PUCHWEIN E. and HAEHNELT M.G.
2017A&A...601A..16B 288           X         7 5 20 Observations of the Lyman series forest towards the redshift 7.1 quasar ULAS J1120+0641. BARNETT R., WARREN S.J., BECKER G.D., et al.
2017A&A...603A.128N 140       D     X         4 30 74 The X-ray properties of z ∼ 6 luminous quasars. NANNI R., VIGNALI C., GILLI R., et al.
2018MNRAS.473..560D 153           X         1 1 112 Large fluctuations in the high-redshift metagalactic ionizing background. D'ALOISIO A., McQUINN M., DAVIES F.B., et al.
2017MNRAS.472.1023C 667       D S   X C F     14 4 6 The comoving mass density of Mg II from z ∼ 2 to 5.5. CODOREANU A., RYAN-WEBER E.V., CRIGHTON N.H.M., et al.
2018ApJ...855..106D 48           X         1 3 22 A new method to measure the post-reionization ionizing background from the joint distribution of Lyα and Lyβ forest transmission. DAVIES F.B., HENNAWI J.F., EILERS A.-C., et al.
2018ApJ...860..155D 612       D S   X C       13 1 19 Determining the nature of late Gunn-Peterson troughs with galaxy surveys. DAVIES F.B., BECKER G.D. and FURLANETTO S.R.
2018ApJ...863...92B viz 905       S   X C       20 805 69 Evidence for large-scale fluctuations in the metagalactic ionizing background near redshift six. BECKER G.D., DAVIES F.B., FURLANETTO S.R., et al.
2018ApJ...864...53E 389       D     X C       9 49 104 The opacity of the intergalactic medium measured along quasar sightlines at z ∼ 6. EILERS A.-C., DAVIES F.B. and HENNAWI J.F.
2018MNRAS.479.1055B 101       D         F     2 60 137 New constraints on Lyman-α opacity with a sample of 62 quasars at z > 5.7. BOSMAN S.E.I., FAN X., JIANG L., et al.
2018MNRAS.481.4940C 512       D S   X C F     10 4 9 The CGM and IGM at z ∼ 5: metal budget and physical connection. CODOREANU A., RYAN-WEBER E.V., GARCIA L.A., et al.
2018ApJ...869..150M 17       D               1 111 151 Subaru High-z Exploration of Low-Luminosity Quasars (SHELLQs). V. Quasar luminosity function and contribution to cosmic reionization at z = 6. MATSUOKA Y., STRAUSS M.A., KASHIKAWA N., et al.
2019MNRAS.483...19M 101       D       C       2 26 32 The role of galaxies and AGNs in reionizing the IGM - II. Metal-tracing the faint sources of reionization at 5 <= z <= 6. MEYER R.A., BOSMAN S.E.I., KAKIICHI K., et al.
2019MNRAS.483.5301G 53           X         1 1 11 The Goldilocks problem of the quasar contribution to reionization. GARALDI E., COMPOSTELLA M. and PORCIANI C.
2019ApJ...874..154D 60           X         1 3 54 Heating of the intergalactic medium by hydrogen reionization. D'ALOISIO A., McQUINN M., MAUPIN O., et al.
2019MNRAS.487.3305M viz 17       D               1 230 47 New constraints on quasar evolution: broad-line velocity shifts over 1.5 <= z <= 7.5. MEYER R.A., BOSMAN S.E.I. and ELLIS R.S.
2019ApJ...881...23E 142       D     X         4 19 ~ Anomaly in the opacity of the post-reionization intergalactic medium in the Lyα and Lyβ forest. EILERS A.-C., HENNAWI J.F., DAVIES F.B., et al.
2019ApJ...883..163B viz 17       D               1 199 41 The evolution of O I over 3.2 < z < 6.5: reionization of the circumgalactic medium. BECKER G.D., PETTINI M., RAFELSKI M., et al.
2019MNRAS.489.1590G 109     A     X         3 1 ~ Neutral island statistics during reionization from 21-cm tomography. GIRI S.K., MELLEMA G., ALDHEIMER T., et al.
2019MNRAS.490.2542P viz 17       D               1 2245 ~ Unveiling the weak radio quasar population at z≥4. PERGER K., FREY S., GABANYI K.E., et al.
2020ApJ...888....6K 1149     A D     X C       27 2 ~ Evidence for a highly opaque large-scale galaxy void at the end of reionization. KASHINO D., LILLY S.J., SHIBUYA T., et al.
2020MNRAS.491.1736K 516     A     X C       9 1 107 Long troughs in the Lyman-α forest below redshift 6 due to islands of neutral hydrogen. KEATING L.C., WEINBERGER L.H., KULKARNI G., et al.
2020MNRAS.494..789R viz 17       D               1 489 25 The near and mid-infrared photometric properties of known redshift z >= 5 quasars. ROSS N.P. and CROSS N.J.G.
2020MNRAS.494.3080N 1117     A     X C F     23 1 70 Observing the tail of reionization: neutral islands in the z = 5.5 Lyman-α forest. NASIR F. and D'ALOISIO A.
2020ApJ...898..149D 81           X         1 1 38 Hydrodynamic response of the intergalactic medium to reionization. D'ALOISIO A., McQUINN M., TRAC H., et al.
2020MNRAS.497..906K 153     A     X         4 1 ~ Constraining the second half of reionization with the Ly β forest. KEATING L.C., KULKARNI G., HAEHNELT M.G., et al.
2020ApJ...900...12L 400       D     X         10 53 11 SCUBA2 High rEdshift bRight quasaR surveY: far-infrared properties and weak-line features. LI Q., WANG R., FAN X., et al.
2020ApJ...903...60I 17       D               1 39 13 Subaru High-z Exploration of Low-Luminosity Quasars (SHELLQs). XI. Proximity zone analysis for faint quasar spectra at z ∼ 6. ISHIMOTO R., KASHIKAWA N., ONOUE M., et al.
2021ApJ...908...96P 99           X         2 1 12 Large-scale variation in reionization history caused by baryon-dark matter streaming velocity. PARK H., SHAPIRO P.R., AHN K., et al.
2021ApJ...908..124L 17       D               1 38 28 Constraining the quasar radio-loud fraction at z ∼ 6 with deep radio observations. LIU Y., WANG R., MOMJIAN E., et al.
2021MNRAS.503.2077B 62       D     X         2 21 25 A comparison of quasar emission reconstruction techniques for z >= 5.0 Lyman α and Lyman β transmission. BOSMAN S.E.I., DUROVCIKOVA D., DAVIES F.B., et al.
2021MNRAS.506.2390Q 315           X         6 1 54 Reionization and galaxy inference from the high-redshift Ly α forest. QIN Y., MESINGER A., BOSMAN S.E.I., et al.
2021A&A...656A.137G viz 17       D               1 493 12 Low frequency radio properties of the z > 5 quasar population. GLOUDEMANS A.J., DUNCAN K.J., ROTTGERING H.J.A., et al.
2021ApJ...923...87C 374     A     X C       8 21 16 Constraints on the end of reionization from the density fields surrounding two highly opaque quasar sightlines. CHRISTENSON H.M., BECKER G.D., FURLANETTO S.R., et al.
2021ApJ...923..223Z viz 366       D     X C       8 56 35 Chasing the tail of cosmic reionization with dark gap statistics in the Lyα forest over 5 < z < 6. ZHU Y., BECKER G.D., BOSMAN S.E.I., et al.
2022ApJ...927....5W 45           X         1 1 ~ Effects of Small-scale Absorption Systems on Neutral Islands during the Late Epoch of Reionization. WU P.-J., XU Y., ZHANG X., et al.
2022MNRAS.512.2389D 287       D     X C       6 143 10 The evolution of the Si IV content in the Universe from the epoch of reionization to cosmic noon. D'ODORICO V., FINLATOR K., CRISTIANI S., et al.
2022MNRAS.514...55B 64       D     X         2 67 95 Hydrogen reionization ends by z = 5.3: Lyman-α optical depth measured by the XQR-30 sample. BOSMAN S.E.I., DAVIES F.B., BECKER G.D., et al.
2022ApJ...932...76Z 50           X         1 4 22 Long Dark Gaps in the Lyβ Forest at z < 6: Evidence of Ultra-late Reionization from XQR-30 Spectra. ZHU Y., BECKER G.D., BOSMAN S.E.I., et al.
2022MNRAS.515.5914I 225           X         5 5 5 The physical origin for spatially large scatter of IGM opacity at the end of reionization: The IGM Lyα opacity-galaxy density relation. ISHIMOTO R., KASHIKAWA N., KASHINO D., et al.
2023ApJ...942...59J 19       D               1 53 7 (Nearly) Model-independent Constraints on the Neutral Hydrogen Fraction in the Intergalactic Medium at z ∼ 5-7 Using Dark Pixel Fractions in Lyα and Lyβ Forests. JIN X., YANG J., FAN X., et al.
2023ApJ...950...66K 22       D               1 6 23 EIGER. I. A Large Sample of [O III]-emitting Galaxies at 5.3 < z < 6.9 and Direct Evidence for Local Reionization by Galaxies. KASHINO D., LILLY S.J., MATTHEE J., et al.
2023MNRAS.523.1399D 19       D               4 42 4 XQR-30: The ultimate XSHOOTER quasar sample at the reionization epoch. D'ODORICO V., BANADOS E., BECKER G.D., et al.
2023A&A...676A..71M 19       D               1 42 ~ XQR-30: Black hole masses and accretion rates of 42 z ≳ 6 quasars. MAZZUCCHELLI C., BISCHETTI M., D'ODORICO V., et al.
2023ApJ...954..174L 93           X         2 10 ~ SCUBA-2 High Redshift Bright Quasar Survey. II. The Environment of z ∼ 6 Quasars at Submillimeter Band. LI Q., WANG R., FAN X., et al.
2023MNRAS.525.4093G 280           X C F     4 66 ~ Measuring the photoionization rate, neutral fraction, and mean free path of H I ionizing photons at 4.9 ≤ z ≤ 6.0 from a large sample of XShooter and ESI spectra. GAIKWAD P., HAEHNELT M.G., DAVIES F.B., et al.
2023ApJ...955..138C 1978       D     X C       42 7 ~ The Relationship between IGM Lyα Opacity and Galaxy Density near the End of Reionization. CHRISTENSON H.M., BECKER G.D., D'ALOISIO A., et al.
2024ApJ...963..129M 50           X         1 6 ~ Little Red Dots: An Abundant Population of Faint Active Galactic Nuclei at z ∼ 5 Revealed by the EIGER and FRESCO JWST Surveys. MATTHEE J., NAIDU R.P., BRAMMER G., et al.

goto View the references in ADS