QSO J1120+0641 , the SIMBAD biblio

QSO J1120+0641 , the SIMBAD biblio (175 results) C.D.S. - SIMBAD4 rel 1.7 - 2020.08.15CEST03:48:36


Sort references on where and how often the object is cited
trying to find the most relevant references on this object.
More on score
Bibcode/DOI Score in Title|Abstract|
Keywords
in a table in teXt, Caption, ... Nb occurence Nb objects in ref Citations
(from ADS)
Title First 3 Authors
2020A&A...637A..84P 20       D               1 32 ~ The ALMA view of the high-redshift relation between supermassive black holes and their host galaxies. PENSABENE A., CARNIANI S., PERNA M., et al.
2020ApJ...888..112M 50           X         1 1 ~ Observing the redshifted 21 cm signal around a bright QSO at z ∼ 10. MA Q.-B., CIARDI B., KAKIICHI K., et al.
2020ApJ...892..109N 50           X         1 2 ~ Rapid reionization by the oligarchs: the case for massive, uv-bright, star-forming galaxies with high escape fractions. NAIDU R.P., TACCHELLA S., MASON C.A., et al.
2020ApJ...895...74N 20       D               1 41 ~ ALMA observations of quasar host galaxies at z ≃ 4.8. NGUYEN N.H., LIRA P., TRAKHTENBROT B., et al.
2020ApJ...895..130B 100           X         2 16 ~ Cosmic spin and mass evolution of black holes and its impact. BHATTACHARYYA D. and MANGALAM A.
2020ApJ...896...23W 300           X C       5 6 ~ A significantly neutral intergalactic medium around the luminous z = 7 quasar J0252-0503. WANG F., DAVIES F.B., YANG J., et al.
2020ApJ...896..151R 50           X         1 44 ~ Survey of extremely high-velocity outflows in Sloan Digital Sky Survey quasars. RODRIGUEZ HIDALGO P., KHATRI A.M., HALL P.B., et al.
2020ApJ...897L..14Y 100             C       1 5 ~ Poniua'ena: a luminous z > 7.5 quasar hosting a 1.5 billion solar mass black hole. YANG J., WANG F., FAN X., et al.
2020MNRAS.491.3884P 330     A     X C       6 14 ~ X-ray properties of z >= 6.5 quasars. PONS E., McMAHON R.G., BANERJI M., et al.
2020MNRAS.493.4256D 2630     A     X C       52 7 ~ Reionization history constraints from neural network based predictions of high-redshift quasar continua. DUROVCIKOVA D., KATZ H., BOSMAN S.E.I., et al.
2020MNRAS.493.5181T 50           X         1 10 ~ RAiSE X: searching for radio galaxies in X-ray surveys. TURNER R.J. and SHABALA S.S.
2020MNRAS.494.5091G 50           X         1 6 ~ Probing the thermal state of the intergalactic medium at z > 5 with the transmission spikes in high-resolution Ly α forest spectra. GAIKWAD P., RAUCH M., HAEHNELT M.G., et al.
2019A&A...625A..23C 1446     A D     X C       31 5 ~ Black hole mass and spin estimates of the most distant quasars. CAMPITIELLO S., CELOTTI A., GHISELLINI G., et al.
2019A&A...626A..60A viz 162 ~ F-GAMMA: Multi-frequency radio monitoring of Fermi blazars. The 2.64 to 43 GHz Effelsberg light curves from 2007-2015. ANGELAKIS E., FUHRMANN L., MYSERLIS I., et al.
2019A&A...627A..72G 47           X         1 12 ~ A NuSTAR view of powerful γ-ray loud blazars. GHISELLINI G., PERRI M., COSTAMANTE L., et al.
2019A&A...630A..59B viz 65       D     X         2 51 ~ Widespread QSO-driven outflows in the early Universe. BISCHETTI M., MAIOLINO R., CARNIANI S., et al.
2019A&A...630A.118V 65       D     X         2 28 ~ The X-ray properties of z > 6 quasars: no evident evolution of accretion physics in the first Gyr of the Universe. VITO F., BRANDT W.N., BAUER F.E., et al.
2019A&A...631A..85E 280           X C       5 2 ~ Euclid preparation. V. Predicted yield of redshift 7 < z < 9 quasars from the wide survey. EUCLID COLLABORATION, BARNETT R., WARREN S.J., et al.
2019A&A...631A.120S 140           X C       2 53 ~ Quasars as standard candles II. The non-linear relation between UV and X-ray emission at high redshifts. SALVESTRINI F., RISALITI G., BISOGNI S., et al.
2019ApJ...870L..11F 93             C       1 8 ~ The discovery of a gravitationally lensed quasar at z = 6.51. FAN X., WANG F., YANG J., et al.
2019ApJ...872L..29S 93             C       1 26 ~ Black versus dark: rapid growth of supermassive black holes in dark matter halos at z ∼ 6. SHIMASAKU K. and IZUMI T.
2019ApJ...875...67M 280           X         6 2 ~ Results from EDGES HigH-band. III. New constraints on parameters of the early universe. MONSALVE R.A., FIALKOV A., BOWMAN J.D., et al.
2019ApJ...876...31G 634     A S   X         13 1 ~ Constraining the tail end of Reionization using Lyα transmission spikes. GARALDI E., GNEDIN N.Y. and MADAU P.
2019ApJ...879..117K 19       D               1 52 ~ High star formation rates of low Eddington ratio quasars at z >= 6. KIM Y. and IM M.
2019ApJ...881L..23B 47           X         1 2 ~ The z = 7.54 quasar ULAS J1342+0928 is hosted by a galaxy merger. BANADOS E., NOVAK M., NEELEMAN M., et al.
2019ApJ...882...77C 252       D     X C       5 73 ~ Heavy element absorption systems at 5.0 < z < 6.8: metal-poor neutral gas and a diminishing signature of highly ionized circumgalactic matter. COOPER T.J., SIMCOE R.A., COOKSEY K.L., et al.
2019ApJ...882..144K 93             C       4 11 ~ Rapidly accreting black hole of the Lyα-luminous quasar PSOJ006.1240+39.2219. KOPTELOVA E., HWANG C.-Y., MALKAN M.A., et al.
2019ApJ...884L..19D 961     A     X C       20 2 ~ Evidence for low radiative efficiency or highly obscured growth of z > 7 quasars. DAVIES F.B., HENNAWI J.F. and EILERS A.-C.
2019ApJ...887...40W 47           X         1 9 ~ Resolving the interstellar medium in the nuclear region of two z = 5.78 quasar host galaxies with ALMA. WANG R., SHAO Y., CARILLI C.L., et al.
2019ApJ...887..174V 47           X         1 3 ~ Submillimeter signatures from growing supermassive black holes before reionization. VASILIEV E.O. and SHCHEKINOV Y.A.
2019MNRAS.483.4080R 47           X         1 4 ~ Dark matter model favoured by reionization data: 7 keV sterile neutrino versus cold dark matter. RUDAKOVSKYI A. and IAKUBOVSKYI D.
2019MNRAS.484.5094G 793           X C F     15 2 ~ Constraints on reionization from the z = 7.5 QSO ULASJ1342+0928. GREIG B., MESINGER A. and BANADOS E.
2019MNRAS.484.5142P 19       D               1 7 ~ A new bright z = 6.82 quasar discovered with VISTA: VHS J0411-0907. PONS E., McMAHON R.G., SIMCOE R.A., et al.
2019MNRAS.487.1160B 47           X         1 2 ~ Bayesian model selection with future 21cm observations of the epoch of reionization. BINNIE T. and PRITCHARD J.R.
2019MNRAS.488.1035K viz 47           X         1 6 ~ Evolution of the AGN UV luminosity function from redshift 7.5. KULKARNI G., WORSECK G. and HENNAWI J.F.
2019MNRAS.488.4004L 47           X         1 2 ~ High-redshift quasars and their host galaxies - I. Kinematical and dynamical properties and their tracers. LUPI A., VOLONTERI M., DECARLI R., et al.
2019MNRAS.488.4195D 93           X         2 4 ~ Maximally rotating supermassive stars at the onset of collapse: effects of gas pressure. DENNISON K.A., BAUMGARTE T.W. and SHAPIRO S.L.
2019MNRAS.489.1206H 159       D     X C       3 26 ~ The diverse galaxy counts in the environment of high-redshift massive black holes in Horizon-AGN. HABOUZIT M., VOLONTERI M., SOMERVILLE R.S., et al.
2019MNRAS.490.2542P 47           X         1 24 ~ Unveiling the weak radio quasar population at z≥4. PERGER K., FREY S., GABANYI K.E., et al.
2019PASJ...71..109H 93             C       1 25 ~ Detections of [O III] 88 μm in two quasars in the reionization epoch. HASHIMOTO T., INOUE A.K., TAMURA Y., et al.
2019PASJ...71..111I 47           X         1 16 ~ Subaru High-z Exploration of Low-Luminosity Quasars (SHELLQs). VIII. A less biased view of the early co-evolution of black holes and host galaxies. IZUMI T., ONOUE M., MATSUOKA Y., et al.
2018A&A...617A.127P 72     A     X         2 3 ~ High-redshift quasar selection from the CFHQSIR survey. PIPIEN S., CUBY J.-G., BASA S., et al.
2018ApJ...854....4B 46           X         1 2 3 SMBH seeds: model discrimination with high-energy emission based on scaling relation evolution. BEN-AMI S., VIKHLININ A. and LOEB A.
2018ApJ...854...97D 18       D               1 50 18 An ALMA [C II] survey of 27 quasars at z > 5.94. DECARLI R., WALTER F., VENEMANS B.P., et al.
2018ApJ...856....2M 278           X C       5 3 27 The Universe is reionizing at z ∼ 7: Bayesian inference of the IGM neutral fraction using Lyα emission from galaxies. MASON C.A., TREU T., DIJKSTRA M., et al.
2018ApJ...863...11M 47           X         1 1 2 Results from EDGES HigH-band. II. Constraints on parameters of early galaxies. MONSALVE R.A., GREIG B., BOWMAN J.D., et al.
2018ApJ...864...53E 45           X         1 49 6 The opacity of the intergalactic medium measured along quasar sightlines at z ∼ 6. EILERS A.-C., DAVIES F.B. and HENNAWI J.F.
2018ApJ...864..142D 1756     A D S   X C       38 2 19 Quantitative constraints on the reionization history from the IGM damping wing signature in two quasars at z > 7. DAVIES F.B., HENNAWI J.F., BANADOS E., et al.
2018ApJ...864..143D 1326     A     X         30 10 6 Predicting quasar continua near Lyα with principal component analysis. DAVIES F.B., HENNAWI J.F., BANADOS E., et al.
2018ApJ...865..126S 659     A     X C       14 3 16 Radiation hydrodynamical simulations of the first quasars. SMIDT J., WHALEN D.J., JOHNSON J.L., et al.
2018ApJ...866..159V 18       D               1 98 1 Dust emission in an accretion-rate-limited sample of z >= 6 quasars. VENEMANS B.P., DECARLI R., WALTER F., et al.
2018MNRAS.473..765C 1686 T   A     X C F     35 2 4 A tale of seven narrow spikes and a long trough: constraining the timing of the percolation of H II bubbles at the tail end of reionization with
ULAS J1120+0641.
CHARDIN J., HAEHNELT M.G., BOSMAN S.E.I., et al.
2018MNRAS.474.2757H 54           X         1 2 18 The evolution of supermassive Population III stars. HAEMMERLE L., WOODS T.E., KLESSEN R.S., et al.
2018MNRAS.477.3694B 134           X         3 3 1 Maximally rotating supermassive stars at the onset of collapse: the perturbative effects of gas pressure, magnetic fields, dark matter, and dark energy. BUTLER S.P., LIMA A.R., BAUMGARTE T.W., et al.
2018MNRAS.477.5501K 192           X         4 1 13 Spatial fluctuations of the intergalactic temperature-density relation after hydrogen reionization. KEATING L.C., PUCHWEIN E. and HAEHNELT M.G.
2018MNRAS.478.1649C 45           X         1 14 1 Two more, bright, z > 6 quasars from VST ATLAS and WISE. CHEHADE B., CARNALL A.C., SHANKS T., et al.
2018MNRAS.478.5564B 47           X         1 2 4 Imprints of quasar duty cycle on the 21-cm signal from the Epochof Reionization. BOLGAR F., EAMES E., HOTTIER C., et al.
2018MNRAS.479.1055B 152       D     X   F     3 60 14 New constraints on Lyman-α opacity with a sample of 62 quasars at z > 5.7. BOSMAN S.E.I., FAN X., JIANG L., et al.
2018MNRAS.479.2079C 48           X         1 4 12 Quenching star formation with quasar outflows launched by trapped IR radiation. COSTA T., ROSDAHL J., SIJACKI D., et al.
2018MNRAS.479.4320G 343     A     X C       7 1 3 X-ray ionization of the intergalactic medium by quasars. GRAZIANI L., CIARDI B. and GLATZLE M.
2018MNRAS.480..681O 45           X         1 3 ~ Growth problems of stellar black holes in early galaxies. OROFINO M.C., FERRARA A. and GALLERANI S.
2018Natur.553..473B 99 3 297 An 800-million-solar-mass black hole in a significantly neutral Universe at a redshift of 7.5. BANADOS E., VENEMANS B.P., MAZZUCCHELLI C., et al.
2017A&A...601A..16B 1988 T K A     X C       44 5 15 Observations of the Lyman series forest towards the redshift 7.1 quasar
ULAS J1120+0641.
BARNETT R., WARREN S.J., BECKER G.D., et al.
2017A&A...602A..84C 44           X         1 8 1 Turbulent gas accretion between supermassive black-holes and star-forming rings in the circumnuclear disk. CHAMANI W., DORSCHNER S. and SCHLEICHER D.R.G.
2017A&A...603A.128N 522     A D     X C       12 30 14 The X-ray properties of z ∼ 6 luminous quasars. NANNI R., VIGNALI C., GILLI R., et al.
2017ApJ...834...83M 61       D     X         2 24 19 No overdensity of Lyman-alpha emitting galaxies around a quasar at z ∼ 5.7. MAZZUCCHELLI C., BANADOS E., DECARLI R., et al.
2017ApJ...836..217C 131           X C       2 2 1 Constraint on matter power spectrum on 106-109 M☉ scales from τ_e. CEN R.
2017ApJ...836L...1T 435     A D     X         11 21 13 On the accretion rates and radiative efficiencies of the highest-redshift quasars. TRAKHTENBROT B., VOLONTERI M. and NATARAJAN P.
2017ApJ...837..146V 876   K A D     X C       20 5 28 The compact, ∼1 kpc host galaxy of a quasar at a redshift of 7.1. VENEMANS B.P., WALTER F., DECARLI R., et al.
2017ApJ...840...24E 44           X         1 35 30 Implications of z ∼ 6 quasar proximity zones for the epoch of reionization and quasar lifetimes. EILERS A.-C., DAVIES F.B., HENNAWI J.F., et al.
2017ApJ...842L..15S 47           X         1 8 27 ISM properties of a massive dusty star-forming galaxy discovered at z ∼ 7. STRANDET M.L., WEISS A., DE BREUCK C., et al.
2017ApJ...845..154V 88           X         2 15 15 Molecular gas in three z ∼ 7 quasar host galaxies. VENEMANS B.P., WALTER F., DECARLI R., et al.
2017ApJ...846..129F 235       D     X C       5 6 2 Unseen progenitors of luminous high-z quasars in the Rh = ct universe. FATUZZO M. and MELIA F.
2017ApJ...849...91M 105       D       C       15 22 28 Physical properties of 15 quasars at z >= 6.5. MAZZUCCHELLI C., BANADOS E., VENEMANS B.P., et al.
2017ApJ...850L..42P 96           X         2 1 9 Conditions for optimal growth of black hole seeds. PACUCCI F., NATARAJAN P., VOLONTERI M., et al.
2017ApJ...851L...8V 133           X         3 9 26 Copious amounts of dust and gas in a z = 7.5 quasar host galaxy. VENEMANS B.P., WALTER F., DECARLI R., et al.
2017MNRAS.464.1137B 87           X         2 2 1 Radiation-damped profiles of extremely high column density neutral hydrogen: implications of cosmic reionization. BACH K.
2017MNRAS.465.4838G 402     A     X C       8 1 28 The global history of reionization. GREIG B. and MESINGER A.
2017MNRAS.465.5016N 51           X         1 1 7 Do stellar winds prevent the formation of supermassive stars by accretion? NAKAUCHI D., HOSOKAWA T., OMUKAI K., et al.
2017MNRAS.466.1814G 54           X         1 1 10 Lyα emission-line reconstruction for high-z QSOs. GREIG B., MESINGER A., McGREER I.D., et al.
2017MNRAS.466.2131P 47           X         1 5 15 Faint progenitors of luminous z ∼ 6 quasars: Why do not we see them? PEZZULLI E., VALIANTE R., OROFINO M.C., et al.
2017MNRAS.466.4239G 2541 T   A S   X C       55 1 34 Are we witnessing the epoch of reionization at z=7.1 from the spectrum of
J1120+0641?
GREIG B., MESINGER A., HAIMAN Z., et al.
2017MNRAS.467.3590G 45           X         1 4 7 X-ray spectroscopy of the z = 6.4 quasar SDSS J1148+5251. GALLERANI S., ZAPPACOSTA L., OROFINO M.C., et al.
2017MNRAS.468..109W 44           X         1 9 3 CMB-induced radio quenching of high-redshift jetted AGNs with highly magnetic hotspots. WU J., GHISELLINI G., HODGES-KLUCK E., et al.
2017MNRAS.468.3718K 223           X         5 2 11 The concerted impact of galaxies and QSOs on the ionization and thermal state of the intergalactic medium. KAKIICHI K., GRAZIANI L., CIARDI B., et al.
2017MNRAS.468.4702R 88           X         2 13 22 Eight new luminous z ≥ 6 quasars discovered via SED model fitting of VISTA, WISE and Dark Energy Survey Year 1 observations. REED S.L., McMAHON R.G., MARTINI P., et al.
2017MNRAS.470.1587A 435       S   X C F     7 6 1 XMM-Newton observation of the ultraluminous quasar SDSS J010013.02+280225.8 at redshift 6.326. AI Y., FABIAN A.C., FAN X., et al.
2017MNRAS.470.1919B 883 T K A D     X C F     18 1 12 A deep search for metals near redshift 7: the line of sight towards
ULAS
J1120+0641
.
BOSMAN S.E.I., BECKER G.D., HAEHNELT M.G., et al.
2017MNRAS.471.2143L 17       D               1 21 ~ [C I], [C II] and CO emission lines as a probe for α variations at low and high redshifts. LEVSHAKOV S.A., NG K.-W., HENKEL C., et al.
2017RAA....17...52G 44           X         1 61 ~ Weak gravitational lensing of quantum perturbed lukewarm black holes and cosmological constant effect. GHAFFARNEJAD H. and MOJAHEDI M.A.
2016A&A...588A..37H 85         O   C       1 33 15 Abundances of carbon-enhanced metal-poor stars as constraints on their formation. HANSEN C.J., NORDSTROM B., HANSEN T.T., et al.
2016ARA&A..54..313M 87           X         2 25 64 The evolution of the intergalactic medium. McQUINN M.
2016ApJ...816...37V 217           X C       4 14 57 Bright [C ii] and dust emission in three z > 6.6 quasar host galaxies observed by ALMA. VENEMANS B.P., WALTER F., ZSCHAECHNER L., et al.
2016ApJ...816...85L 17       D               1 136 17 The contribution of host galaxies to the infrared energy output of z≳5.0 quasars. LYU J., RIEKE G.H. and ALBERTS S.
2016ApJ...819...24W viz 60       D     X         2 796 26 A survey of luminous high-redshift quasars with SDSS and WISE. I. Target selection and optical spectroscopy. WANG F., WU X.-B., FAN X., et al.
2016ApJ...823L..37A 45           X         1 3 8 Exploratory Chandra observation of the ultraluminous quasar SDSS J010013.02+280225.8 at redshift 6.30. AI Y., DOU L., FAN X., et al.
2016ApJ...828...26M 130           X         3 25 64 Subaru high-z exploration of low-luminosity quasars (SHELLQs). I. Discovery of 15 quasars and bright galaxies at 5.7 < z < 6.9. MATSUOKA Y., ONOUE M., KASHIKAWA N., et al.
2016ApJ...833...21P 44           X         1 13 17 Observational constraints on first-star nucleosynthesis. II. Spectroscopy of an ultra metal-poor CEMP-no star. PLACCO V.M., FREBEL A., BEERS T.C., et al.
2016MNRAS.456.2993L 119           X         2 1 34 Growing massive black holes through supercritical accretion of stellar-mass seeds. LUPI A., HAARDT F., DOTTI M., et al.
2016MNRAS.457.3356V 52           X         1 3 28 From the first stars to the first black holes. VALIANTE R., SCHNEIDER R., VOLONTERI M., et al.
2016MNRAS.458.3047P 256     A     X C       5 2 37 Super-Eddington growth of the first black holes. PEZZULLI E., VALIANTE R. and SCHNEIDER R.
2016MNRAS.459.1432P 216           X C F     3 9 33 First identification of direct collapse black hole candidates in the early Universe in CANDELS/GOODS-S. PACUCCI F., FERRARA A., GRAZIAN A., et al.
2016MNRAS.462.3812T 86           X         2 7 7 Mergers of accreting stellar-mass black holes. TAGAWA H., UMEMURA M. and GOUDA N.
2015A&A...575A..31B viz 1156 T K A     X C       26 8 18 The spectral energy distribution of the redshift 7.1 quasar
ULAS
J1120+0641
.
BARNETT R., WARREN S.J., BANERJI M., et al.
2015A&A...577A..80M 296     A D   O X         8 13 45 Dust production 680-850 million years after the Big Bang. MICHALOWSKI M.J.
2015A&A...579A..60S 49           X         1 3 23 The origin of the far-infrared continuum of z ∼ 6 quasars. A radiative transfer model for SDSS J1148+5251. SCHNEIDER R., BIANCHI S., VALIANTE R., et al.
2015ARA&A..53..631F 45           X         1 38 136 Near-field cosmology with extremely metal-poor stars. FREBEL A. and NORRIS J.E.
2015ApJ...801..123W 270       D     X         7 16 47 Star formation rate and dynamical mass of 108 solar mass black hole host galaxies at redshift 6. WILLOTT C.J., BERGERON J. and OMONT A.
2015ApJ...804...57S 17       D               1 14 5 Spatially resolving the kinematics of the ≲ 100 µas quasar broad-line region using spectroastrometry. STERN J., HENNAWI J.F. and POTT J.-U.
2015ApJ...804..118B 100       D       C       2 56 23 Constraining the radio-loud fraction of quasars at z > 5.5. BANADOS E., VENEMANS B.P., MORGANSON E., et al.
2015ApJ...804..131P 303           X         7 3 31 Supermassive black holes from ultra-strongly self-interacting dark matter. POLLACK J., SPERGEL D.N. and STEINHARDT P.J.
2015ApJ...804..148V 166           X         3 2 82 The case for supercritical accretion onto massive black holes at high redshift. VOLONTERI M., SILK J. and DUBUS G.
2015ApJ...805L...8B 214           X C       4 4 23 Bright [C II] 158 µm emission in a quasar host galaxy at z = 6.54. BANADOS E., DECARLI R., WALTER F., et al.
2015ApJ...807L...9W 92             C       1 3 24 An ultra-luminous quasar at z = 5.363 with a ten billion solar mass black hole and a metal-rich DLA at z ∼ 5. WANG F., WU X.-B., FAN X., et al.
2015ApJ...814...18H 50           X         1 1 8 Early structure formation from primordial density fluctuations with a blue, tilted power spectrum. HIRANO S., ZHU N., YOSHIDA N., et al.
2015MNRAS.451.1964S 85           X         2 4 5 SMBH growth parameters in the early Universe of Millennium and Millennium-II simulations. SMOLE M., MICIC M. and MARTINOVIC N.
2015MNRAS.451.2174T 87           X         2 2 7 Early cosmic merger of multiple black holes. TAGAWA H., UMEMURA M., GOUDA N., et al.
2015MNRAS.451L..16C 46           X         1 8 34 Two bright z > 6 quasars from VST ATLAS and a new method of optical plus mid-infrared colour selection. CARNALL A.C., SHANKS T., CHEHADE B., et al.
2015MNRAS.452.1105B 3397 T K A     X C       79 1 28 Re-examining the case for neutral gas near the redshift 7 quasar
ULAS
J1120+0641
.
BOSMAN S.E.I. and BECKER G.D.
2015MNRAS.453.2943C 139           X         3 3 44 Calibrating cosmological radiative transfer simulations with Ly α forest data: evidence for large spatial UV background fluctuations at z ∼ 5.6-5.8 due to rare bright sources. CHARDIN J., HAEHNELT M.G., AUBERT D., et al.
2015MNRAS.453L..88Z 42           X         1 11 7 Early science with the Large Millimeter Telescope: dust constraints in a z ∼ 9.6 galaxy. ZAVALA J.A., MICHALOWSKI M.J., ARETXAGA I., et al.
2015MNRAS.454..681K 995     A     X C       23 2 19 Probing the end of reionization with the near zones of z ≳ 6 QSOs. KEATING L.C., HAEHNELT M.G., CANTALUPO S., et al.
2015Natur.518..512W 94 3 282 An ultraluminous quasar with a twelve-billion-solar-mass black hole at redshift 6.30. WU X.-B., WANG F., FAN X., et al.
2015RAA....15.1945S 125           X         3 108 31 Thirty Meter Telescope Detailed Science Case: 2015. SKIDMORE W.
2014A&A...562A..35N viz 16       D               1 29 25 High-resolution C+ imaging of HDF 850.1 reveals a merging galaxy at z = 5.185. NERI R., DOWNES D., COX P., et al.
2014A&A...563A..46M 854 T K A     X C       19 2 12 X-ray observation of
ULAS
J1120+0641
, the most distant quasar at z = 7.08.
MORETTI A., BALLO L., BRAITO V., et al.
2014AJ....147....6M 934   K A     X C       22 3 14 The highest redshift quasar at z = 7.085: a radio-quiet source. MOMJIAN E., CARILLI C.L., WALTER F., et al.
2014ApJ...782...69L 89           X         2 7 50 The coevolution of supermassive black holes and massive galaxies at high redshift. LAPI A., RAIMUNDO S., AVERSA R., et al.
2014ApJ...784L..38M 186           X         2 1 104 Super-critical growth of massive black holes from stellar-mass seeds. MADAU P., HAARDT F. and DOTTI M.
2014ApJ...788L..30D 46           X         1 4 23 Dust formation, evolution, and obscuration effects in the very high-redshift universe. DWEK E., STAGUHN J., ARENDT R.G., et al.
2014ApJ...790..145D 1513       D     X C       36 5 79 Black hole mass estimates and emission-line properties of a sample of redshift z > 6.5 quasars. DE ROSA G., VENEMANS B.P., DECARLI R., et al.
2014ApJ...792...34O 43           X         1 34 68 ALMA observation of 158 µm [C II] line and dust continuum of a z = 7 normally star-forming galaxy in the epoch of reionization. OTA K., WALTER F., OHTA K., et al.
2014ApJ...795L..29Y 42           X         1 14 15 SDSS J013127.34-032100.1: a newly discovered radio-loud quasar at z = 5.18 with extremely high luminosity. YI W.-M., WANG F., WU X.-B., et al.
2014ApJ...797...16K 95           X         2 6 79 Accelerated evolution of the Lyα luminosity function at z ≳ 7 revealed by the Subaru ultra-deep survey for Lyα emitters at z = 7.3. KONNO A., OUCHI M., ONO Y., et al.
2014MNRAS.438.1820K 169           X C       3 6 28 Probing the metallicity and ionization state of the circumgalactic medium at z ∼ 6 and beyond with OI absorption. KEATING L.C., HAEHNELT M.G., BECKER G.D., et al.
2014MNRAS.438.2765C 16       D               1 60 33 The dust content of QSO hosts at high redshift. CALURA F., GILLI R., VIGNALI C., et al.
2014MNRAS.440.1662S 157             C       1 1 75 Inhomogeneous recombinations during cosmic reionization. SOBACCHI E. and MESINGER A.
2014MNRAS.440L..91P 1888 T K A     X C       44 2 22 X-rays from the redshift 7.1 quasar
ULAS J1120+0641.
PAGE M.J., SIMPSON C., MORTLOCK D.J., et al.
2014MNRAS.442.2036D 117     A               1 1 92 Feedback-regulated supermassive black hole seed formation. DIJKSTRA M., FERRARA A. and MESINGER A.
2014MNRAS.442.3454S 1096 T K A S   X C       24 12 21 No excess of bright galaxies around the redshift 7.1 quasar ULAS J1120+0641. SIMPSON C., MORTLOCK D., WARREN S., et al.
2014MNRAS.442L..81F 315     A S   X         7 4 10 Do high-redshift quasars have powerful jets ? FABIAN A.C., WALKER S.A., CELOTTI A., et al.
2014MNRAS.443.2410F 75           X         1 2 68 Initial mass function of intermediate-mass black hole seeds. FERRARA A., SALVADORI S., YUE B., et al.
2014MNRAS.443.2831C 42           X         1 57 90 Spectroscopy of z ∼ 7 candidate galaxies: using Lyman α to constrain the neutral fraction of hydrogen in the high-redshift universe. CARUANA J., BUNKER A.J., WILKINS S.M., et al.
2014MNRAS.444.2442V 43           X         1 17 38 High-redshift quasars host galaxies: is there a stellar mass crisis ? VALIANTE R., SCHNEIDER R., SALVADORI S., et al.
2014MNRAS.445.2848G 43           X         1 10 25 First CO(17-16) emission line detected in a z > 6 quasar. GALLERANI S., FERRARA A., NERI R., et al.
2013A&A...556A..97C 42           X         1 17 23 Towards equation of state of dark energy from quasar monitoring: reverberation strategy. CZERNY B., HRYNIEWICZ K., MAITY I., et al.
2013AJ....145...55Y 87           X         2 18 112 Characterizing the mid-infrared extragalactic sky with WISE and SDSS. YAN L., DONOSO E., TSAI C.-W., et al.
2013ARA&A..51..105C 62           X         1 25 546 Cool gas in high-redshift galaxies. CARILLI C.L. and WALTER F.
2013ApJ...764...72M 59       D     X         2 19 44 High-z quasars in the rh= ct universe. MELIA F.
2013ApJ...770...13W 134           X C       2 7 84 Redshift 6.4 host galaxies of 108 solar mass black holes: low star formation rate and dynamical mass. WILLOTT C.J., OMONT A. and BERGERON J.
2013ApJ...773...44W 138           X C       2 11 178 Star formation and gas kinematics of quasar host galaxies at z ∼ 6: new insights from ALMA. WANG R., WAGG J., CARILLI C.L., et al.
2013ApJ...778..113B 260       D     X C       6 18 17 WISE detections of known QSOs at redshifts greater than six. BLAIN A.W., ASSEF R., STERN D., et al.
2013ApJ...779...24V 237     A     X         6 14 147 Discovery of three z > 6.5 quasars in the VISTA kilo-degree infrared galaxy (VIKING) survey. VENEMANS B.P., FINDLAY J.R., SUTHERLAND W.J., et al.
2013MNRAS.428.3058S 176           X         4 5 70 Evidence of Gunn-Peterson damping wings in high-z quasar spectra: strengthening the case for incomplete reionization at z ∼ 6-7. SCHROEDER J., MESINGER A. and HAIMAN Z.
2013MNRAS.429.1554F 47           X         1 1 6 Growth and anisotropy of ionization fronts near high-redshift quasars in the MassiveBlack simulation. FENG Y., CROFT R.A.C., DI MATTEO T., et al.
2013MNRAS.429.1695B 548     A     X C F     10 1 77 On the rapid demise of Ly α emitters at redshift z ≳ 7 due to the increasing incidence of optically thick absorption systems. BOLTON J.S. and HAEHNELT M.G.
2013MNRAS.432.2324L 144           X C       2 1 22 Matter matters: unphysical properties of the Rh = ct universe. LEWIS G.F.
2013MNRAS.432.2818G 47           X         1 3 19 The role of relativistic jets in the heaviest and most active supermassive black holes at high redshift. GHISELLINI G., HAARDT F., DELLA CECA R., et al.
2013MNRAS.435.1198D viz 48           X         1 8 56 Metals in the IGM approaching the re-ionization epoch: results from X-shooter at the VLT. D'ODORICO V., CUPANI G., CRISTIANI S., et al.
2013MNRAS.435.1443M 56           X         1 1 15 Simulating extremely metal-poor gas and DLA metal content at redshift z ≃ 7. MAIO U., CIARDI B. and MULLER V.
2013MNRAS.435.3559T 63           X         1 1 22 The effect of baryonic streaming motions on the formation of the first supermassive black holes. TANAKA T.L., LI M. and HAIMAN Z.
2013MNRAS.436.1023B 187           X         1 1 146 New measurements of the ionizing ultraviolet background over 2 < z < 5 and implications for hydrogen reionization. BECKER G.D. and BOLTON J.S.
2013MNRAS.436.1818F 374     A S   X C F     6 1 25 The host haloes of OI absorbers in the reionization epoch. FINLATOR K., MUNOZ J.A., OPPENHEIMER B.D., et al.
2012ApJ...751L..25V 1037   K A     X C       25 12 114 Detection of atomic carbon [C II] 158 µm and dust emission from a z = 7.1 quasar host galaxy. VENEMANS B.P., McMAHON R.G., WALTER F., et al.
2012ApJ...755L..15C 44           X         1 1 4 Quasi-star jets as unidentified gamma-ray sources. CZERNY B., JANIUK A., SIKORA M., et al.
2012ApJ...758...93F 67           X         1 5 135 CANDELS: the contribution of the observed galaxy population to cosmic reionization. FINKELSTEIN S.L., PAPOVICH C., RYAN R.E., et al.
2012MNRAS.419..390M 163           X   F     3 12 32 Probabilistic selection of high-redshift quasars. MORTLOCK D.J., PATEL M., WARREN S.J., et al.
2012MNRAS.420.1764R 203           X   F     4 3 7 Detecting the highest redshift (z > 8) quasi-stellar objects in a wide, near-infrared slitless spectroscopic survey. ROCHE N., FRANZETTI P., GARILLI B., et al.
2012MNRAS.421.1969R 55           X         1 2 30 Thermal constraints on the reionization of hydrogen by Population II stellar sources. RASKUTTI S., BOLTON J.S., WYITHE J.S.B., et al.
2012MNRAS.422.1690P 73           X         1 1 33 Supermassive black hole ancestors. PETRI A., FERRARA A. and SALVATERRA R.
2012MNRAS.426.3178M 140           X C       2 1 20 Constraining quasar and intergalactic medium properties through bubble detection in redshifted 21-cm maps. MAJUMDAR S., BHARADWAJ S. and CHOUDHURY T.R.
2012Natur.492...79S 64 1 64 Extremely metal-poor gas at a redshift of 7. SIMCOE R.A., SULLIVAN P.W., COOKSEY K.L., et al.
2012RAA....12..865F 161           X         4 33 14 Observations of the first light and the epoch of reionization. FAN X.
2011MNRAS.416L..70B 1091 T   A     X C F     24 2 141 How neutral is the intergalactic medium surrounding the redshift z = 7.085 quasar
ULAS J1120+0641?
BOLTON J.S., HAEHNELT M.G., WARREN S.J., et al.
2011Natur.474..616M 1944     A     X C       46 5 937 A luminous quasar at a redshift of z = 7.085. MORTIOCK D.J., WARREN S.J., VENEMANS B.P., et al.

goto View the references in ADSLimited to 100


2020.08.15-03:48:36

© Université de Strasbourg/CNRS

    • Contact