SN 2012cg , the SIMBAD biblio

SN 2012cg , the SIMBAD biblio (191 results) C.D.S. - SIMBAD4 rel 1.8 - 2024.04.19CEST19:14:02


Sort references on where and how often the object is cited
trying to find the most relevant references on this object.
More on score
Bibcode/DOI Score in Title|Abstract|
Keywords
in a table in teXt, Caption, ... Nb occurence Nb objects in ref Citations
(from ADS)
Title First 3 Authors
2012ApJ...756L...7S 1999 T K A     X C F     49 8 59 The very young type Ia supernova 2012cg: discovery and early-time follow-up observations. SILVERMAN J.M., GANESHALINGAM M., CENKO S.B., et al.
2012CBET.3111....1K 40 T       O X         2 7 Supernova 2012cg in NGC 4424 = PSN J12271283+0925132. KANDRASHOFF M., CENKO S.B., LI W., et al.
2012CBET.3111....2C 39 T       O X         3 5 Supernova 2012cg in NGC 4424 = PSN J12271283+0925132. CENKO S.B., FILIPPENKO A.V., SILVERMAN J.M., et al.
2012CBET.3111....3M 39 T       O X         3 5 Supernova 2012cg in NGC 4424 = PSN J12271283+0925132. MARION G.H., KIRSHNER R.P., FOLEY R.J., et al.
2013MNRAS.431L..43J 625   K A D S   X         16 11 23 Herschel limits on far-infrared emission from circumstellar dust around three nearby Type Ia supernovae. JOHANSSON J., AMANULLAH R. and GOOBAR A.
2013ApJ...769...67P 48           X         1 8 157 What can we learn from the rising light curves of radioactively powered supernovae? PIRO A.L. and NAKAR E.
2013MNRAS.433.2240G viz 78             C       1 597 70 Constraints on dark energy with the LOSS SN Ia sample. GANESHALINGAM M., LI W. and FILIPPENKO A.V.
2013MNRAS.435..771M viz 39           X         1 17 20 Photometric evolution, orbital modulation and progenitor of Nova Mon 2012. MUNARI U., DALLAPORTA S., CASTELLANI F., et al.
2013MNRAS.436..222M 679       D     X C F     16 61 101 A statistical analysis of circumstellar material in type Ia supernovae. MAGUIRE K., SULLIVAN M., PATAT F., et al.
2013ApJ...778L..15Z 80           X         2 15 74 The very young type Ia supernova 2013dy: discovery, and strong carbon absorption in early-time spectra. ZHENG W., SILVERMAN J.M., FILIPPENKO A.V., et al.
2013ApJ...779...38P 133       D     X         4 112 199 On the source of the dust extinction in type Ia supernovae and the discovery of anomalously strong Na I absorption. PHILLIPS M.M., SIMON J.D., MORRELL N., et al.
2014ApJ...782L..35Y 80   K       X         2 13 28 Early-phase photometry and spectroscopy of transitional type Ia SN 2012ht: direct constraint on the rise time. YAMANAKA M., MAEDA K., KAWABATA M., et al.
2014ApJ...783L..24Z 41           X         1 14 82 Estimating the first-light time of the Type Ia supernova 2014J in M82. ZHENG W., SHIVVERS I., FILIPPENKO A.V., et al.
2014ApJ...784...85P 697     A S   X C       16 8 86 Constraints on shallow 56Ni from the early light curves of type Ia supernovae. PIRO A.L. and NAKAR E.
2014ApJ...795..142G viz 16       D               1 448 7 Defining photometric peculiar type Ia supernovae. GONZALEZ-GAITAN S., HSIAO E.Y., PIGNATA G., et al.
2013NewA...20...30M viz 921 T K A     X C       22 27 101 BVRI lightcurves of supernovae SN 2011fe in M101, SN 2012aw in M95, and
SN 2012cg in NGC 4424.
MUNARI U., HENDEN A., BELLIGOLI R., et al.
2014ARA&A..52..107M 46           X         1 49 756 Observational clues to the progenitors of type Ia supernovae. MAOZ D., MANNUCCI F. and NELEMANS G.
2015ApJ...802...20R 16       D               1 138 187 Confirmation of a star formation bias in Type Ia supernova distances and its effect on the measurement of the Hubble constant. RIGAULT M., ALDERING G., KOWALSKI M., et al.
2015Natur.521..332O 5 12 120 No signature of ejecta interaction with a stellar companion in three type Ia supernovae. OLLING R.P., MUSHOTZKY R., SHAYA E.J., et al.
2012ATel.4115....1C 39           X         1 3 4 KAIT Discovery and Robotic Follow-up of a young SN Ia in NGC 4424. CENKO S.B., FILIPPENKO A.V., SILVERMAN J.M., et al.
2012ATel.4118....1M 77 T         X         1 2 2 No detected X-ray counterpart to the young SN Ia in NGC 4424. MARGUTTI R. and SODERBERG A.
2012ATel.4119....1H 155 T         X         3 3 ~ Near-infrared spectroscopy of the young SN Ia in NGC 4424. HSIAO E.Y., PHILLIPS M.M., MORRELL N., et al.
2012ATel.4138....1L 116 T         X         2 2 3 SN 2012cg prediscovery marginally detection by MASTER. LIPUNOV V. and KRUSHINSKY V.
2012ATel.4159....1M 233 T         X         5 1 2 Early optical and NIR photometry and optical spectroscopy of
SN 2012cg.
MARION G.H., CHALLIS P., HICKEN M., et al.
2012ATel.4215....1M 232 T         X         5 2 1 Updated physical parameters of
SN 2012cg.
MARION G.H., CHALLIS P., HICKEN M., et al.
2012ATel.4226....1G 156 T         X         3 2 5 Type-Ia
SN 2012cg: no progenitor detected in pre-explosion HST images to M_V ∼ -6.0, M_I ∼ -5.4 mag.
GRAUR O. and MAOZ D.
2012ATel.4453....1C 195 T         X         4 1 5 Radially sampling the circumstellar material around type Ia
SN 2012cg with VLA monitoring.
CHOMIUK L., SODERBERG A., SIMON J., et al.
2015A&A...578A...9H viz 41           X         1 29 65 Strong near-infrared carbon in the Type Ia supernova iPTF 13ebh. HSIAO E.Y., BURNS C.R., CONTRERAS C., et al.
2015ApJS..220....9F viz 16       D               1 315 64 CfAIR2: near-infrared light curves of 94 Type Ia supernovae. FRIEDMAN A.S., WOOD-VASEY W.M., MARION G.H., et al.
2015ApJS..220...20Z viz 214       D     X C       5 209 14 The silicon and calcium high-velocity features in Type Ia supernovae from early to maximum phases. ZHAO X., WANG X., MAEDA K., et al.
2015ApJ...811...70R 41           X         1 14 49 Illuminating a dark lens : a type Ia supernova magnified by the frontier fields galaxy cluster Abell 2744. RODNEY S.A., PATEL B., SCOLNIC D., et al.
2015MNRAS.451.1973S viz 1049       D     X         27 211 45 High-velocity features of calcium and silicon in the spectra of Type Ia supernovae. SILVERMAN J.M., VINKO J., MARION G.H., et al.
2015ApJ...814L...2F 42           X         1 5 28 Reconciling the infrared catastrophe and observations of SN 2011fe. FRANSSON C. and JERKSTRAND A.
2015ApJS..221...22I 41           X         1 12 26 The very early light curve of SN 2015F in NGC 2442: a possible detection of shock-heated cooling emission and constraints on SN Ia progenitor system. IM M., CHOI C., YOON S.-C., et al.
2015MNRAS.454.3816C viz 373       D     X         10 71 74 Measuring nickel masses in Type Ia supernovae using cobalt emission in nebular phase spectra. CHILDRESS M.J., HILLIER D.J., SEITENZAHL I., et al.
2015MNRAS.453.3300A 3909   K   D     X C F     97 37 82 Diversity in extinction laws of Type Ia supernovae measured between 0.2 and 2µm. AMANULLAH R., JOHANSSON J., GOOBAR A., et al.
2015AstL...41..785B 12 1 Type Ia supernovae 2014J and 2011fe at the nebular phase. BIKMAEV I.F., CHUGAI N.N., SUNYAEV R.A., et al.
2016PASP..12834501S 201           X C       4 10 ~ Decontaminating Swift UVOT Grism Observations of Transient Sources. SMITKA M.T., BROWN P.J., KUIN P., et al.
2016ApJ...819...31G 1552 T K A     X C       37 13 41 Late-time photometry of Type Ia supernova
SN 2012cg reveals the radioactive decay of 57Co.
GRAUR O., ZUREK D., SHARA M.M., et al.
2016ApJ...819..152C 80           X         2 91 6 Determining Type Ia supernova host galaxy extinction probabilities and a statistical approach to estimating the absorption-to-reddening ratio RV. CIKOTA A., DEUSTUA S. and MARLEAU F.
2016ApJ...820...67Z 1130           X C       27 10 64 Optical observations of the Type Ia supernova SN 2011fe in M101 for nearly 500 days. ZHANG K., WANG X., ZHANG J., et al.
2016ApJ...820...92M 4027 T K A D S   X C       98 11 143 SN∼2012cg: evidence for interaction between a normal Type Ia supernova and a non-degenerate binary companion. MARION G.H., BROWN P.J., VINKO J., et al.
2016ApJ...821..119C 321   K A D S   X         8 175 97 A deep search for prompt radio emission from thermonuclear supernovae with the very large array. CHOMIUK L., SODERBERG A.M., CHEVALIER R.A., et al.
2016A&A...588A..88M 120           X         3 15 4 The X-ray/radio and UV luminosity expected from symbiotic systems as the progenitor of SNe Ia. MENG X. and HAN Z.
2016ApJ...823..147C 80             C       1 14 7 Absence of fast-moving iron in an intermediate type Ia supernova between normal and super-Chandrasekhar. CAO Y., JOHANSSON J., NUGENT P.E., et al.
2016MNRAS.457.3254M 780       D     X C F     18 46 47 Searching for swept-up hydrogen and helium in the late-time spectra of 11 nearby Type Ia supernovae. MAGUIRE K., TAUBENBERGER S., SULLIVAN M., et al.
2016ApJ...826..144S viz 285           X C       6 12 52 The young and bright type Ia supernova ASASSN-14lp: discovery, early-time observations, first-light time, distance to NGC 4666, and progenitor constraints. SHAPPEE B.J., PIRO A.L., HOLOIEN T.W.-S., et al.
2016ApJ...826..211Z 417       D     X C       10 88 7 The oxygen features in type Ia supernovae and implications for the nature of thermonuclear explosions. ZHAO X., MAEDA K., WANG X., et al.
2016MNRAS.459.1781L 3693 T   A D S   X C F     89 8 6 Constraining the progenitor of the Type Ia Supernova
SN 2012cg.
LIU Z.-W. and STANCLIFFE R.J.
2016MNRAS.459.4428K 43           X         1 9 29 The peculiar Type Ia supernova iPTF14atg: Chandrasekhar-mass explosion or violent merger? KROMER M., FREMLING C., PAKMOR R., et al.
2016PASJ...68...68Y 40           X         1 18 11 OISTER optical and near-infrared observations of the super-Chandrasekhar supernova candidate SN 2012dn: Dust emission from the circumstellar shell. YAMANAKA M., MAEDA K., TANAKA M., et al.
2016MNRAS.461.1308F 418   K   D     X C F     9 16 22 Ultraviolet diversity of Type Ia Supernovae. FOLEY R.J., PAN Y., BROWN P., et al.
2016ApJ...833..231T 16       D               1 103 50 A systematic study of mid-infrared emission from core-collapse supernovae with SPIRITS. TINYANONT S., KASLIWAL M.M., FOX O.D., et al.
2017MNRAS.465.2060B 124           X         3 2 5 Imprints of the ejecta-companion interaction in Type Ia supernovae: main-sequence, subgiant, and red giant companions. BOEHNER P., PLEWA T. and LANGER N.
2017ApJ...836...88Z 41           X         1 34 7 Continuum foreground polarization and Na I absorption in Type Ia SNe. ZELAYA P., CLOCCHIATTI A., BAADE D., et al.
2017MNRAS.464.4476C 42           X         1 18 32 Early observations of the nearby Type Ia supernova SN 2015F. CARTIER R., SULLIVAN M., FIRTH R.E., et al.
2017ApJ...838L...4Z 41           X         1 6 3 An empirical fitting method for Type Ia supernova light curves: a case study of SN 2011fe. ZHENG W. and FILIPPENKO A.V.
2017ApJ...841...48S viz 287           X         7 10 34 Whimper of a bang: documenting the final days of the nearby Type Ia supernova 2011fe. SHAPPEE B.J., STANEK K.Z., KOCHANEK C.S., et al.
2017ApJ...841...58D 86           X         2 3 16 Constraining the single-degenerate channel of Type Ia supernovae with stable iron-group elements in SNR 3C 397. DAVE P., KASHYAP R., FISHER R., et al.
2017ApJ...841...64Z 301       D     X C       7 40 13 Discovery and follow-up observations of the young Type Ia supernova 2016coj. ZHENG W., FILIPPENKO A.V., MAUERHAN J., et al.
2017MNRAS.466.3442J 423   K   D     X C       10 21 33 Spitzer observations of SN 2014J and properties of mid-IR emission in Type Ia supernovae. JOHANSSON J., GOOBAR A., KASLIWAL M.M., et al.
2017MNRAS.467..778M 81               F     1 7 3 High-velocity features in Type Ia supernovae from a compact circumstellar shell. MULLIGAN B.W. and WHEELER J.C.
2017MNRAS.468.3798D 286           X C F     5 12 26 The late-time light curve of the Type Ia supernova SN 2011fe. DIMITRIADIS G., SULLIVAN M., KERZENDORF W., et al.
2017ApJ...843..102G 122           X C       2 11 2 PTF11kx: a Type Ia supernova with hydrogen emission persisting after 3.5 years. GRAHAM M.L., HARRIS C.E., FOX O.D., et al.
2017ApJ...845L..11H 297           X C       6 9 121 Early blue excess from the Type Ia supernova 2017cbv and implications for its progenitor. HOSSEINZADEH G., SAND D.J., VALENTI S., et al.
2017A&A...603A.136P 122           X C       2 15 1 Testing for redshift evolution of Type Ia supernovae using the strongly lensed PS1-10afx at z = 1.4. PETRUSHEVSKA T., AMANULLAH R., BULLA M., et al.
2017MNRAS.470.2510L 1122   K A     X C F     26 4 7 Early UV emission from disc-originated matter (DOM) in Type Ia supernovae in the double-degenerate scenario. LEVANON N. and SOKER N.
2017ApJ...848...66Z 16       D     X         1 66 4 An empirical fitting method for Type Ia supernova light curves. II. Estimating the first-light time and rise time. ZHENG W., KELLY P.L. and FILIPPENKO A.V.
2017AJ....154..211K viz 41           X         1 348 140 The Carnegie Supernova Project. I. Third photometry data release of low-redshift Type Ia supernovae and other white dwarf explosions. KRISCIUNAS K., CONTRERAS C., BURNS C.R., et al.
2017MNRAS.471.2463B 162           X         4 24 5 LSQ14efd: observations of the cooling of a shock break-out event in a type Ic Supernova. BARBARINO C., BOTTICELLA M.T., DALL'ORA M., et al.
2018ApJ...852...89Y 249           X         6 7 17 Late-time flattening of Type Ia supernova light curves: constraints from SN 2014J in M82. YANG Y., WANG L., BAADE D., et al.
2018ApJ...852..100M 291           X         7 9 31 Early observations of the Type Ia supernova iPTF 16abc: a case of interaction with nearby, unbound material and/or strong ejecta mixing. MILLER A.A., CAO Y., PIRO A.L., et al.
2017MNRAS.472.2534K 44           X         1 5 17 Extremely late photometry of the nearby SN 2011fe. KERZENDORF W.E., McCULLY C., TAUBENBERGER S., et al.
2017MNRAS.472.2787N 44           X         1 9 32 Early light curves for Type Ia supernova explosion models. NOEBAUER U.M., KROMER M., TAUBENBERGER S., et al.
2018ApJ...853...62T viz 84             C       1 30 88 The early detection and follow-up of the highly obscured Type II supernova 2016ija/DLT16am. TARTAGLIA L., SAND D.J., VALENTI S., et al.
2018A&A...609A..72D 223       D     X C       5 82 145 Measuring the Hubble constant with Type Ia supernovae as near-infrared standard candles. DHAWAN S., JHA S.W. and LEIBUNDGUT B.
2018ApJ...854...52S 136           X C       2 13 175 Sub-Chandrasekhar-mass white dwarf detonations revisited. SHEN K.J., KASEN D., MILES B.J., et al.
2018ApJ...854...55Y 41           X         1 18 5 Mapping circumstellar matter with polarized light: the case of supernova 2014J in M82. YANG Y., WANG L., BAADE D., et al.
2018ApJ...855....6S 2744 T K A     X C       65 14 44 Strong evidence against a non-degenerate companion in
SN 2012cg.
SHAPPEE B.J., PIRO A.L., STANEK K.Z., et al.
2018ApJ...855L..18M 206           X         5 12 4 Why are peculiar Type Ia supernovae more likely to show the signature of a single-degenerate model? MENG X.-C. and HAN Z.-W.
2018ApJ...857...88J 207           X         5 8 8 Constraining Type Ia supernova progenitor scenarios with extremely late-time photometry of supernova SN 2013aa. JACOBSON-GALAN W.V., DIMITRIADIS G., FOLEY R.J., et al.
2018MNRAS.475.5257L 41           X         1 9 2 Rates and delay times of Type Ia supernovae in the helium-enriched main-sequence donor scenario. LIU Z.-W. and STANCLIFFE R.J.
2018AJ....155..201W viz 16       D               3 81 9 The first data release from SweetSpot: 74 supernovae in 36 nights on WIYN+WHIRC. WEYANT A., WOOD-VASEY W.M., JOYCE R., et al.
2018PASP..130f4101V 593   K   D S   X C       13 11 7 Absolute distances to nearby Type Ia supernovae via light curve fitting methods. VINKO J., ORDASI A., SZALAI T., et al.
2018ApJ...859...79G 1565   K A D S   X C       37 13 15 Observations of SN 2015F suggest a correlation between the intrinsic luminosity of Type Ia supernovae and the shape of their light curves >900 days after explosion. GRAUR O., ZUREK D.R., REST A., et al.
2018MNRAS.477.3567M 223       D     X C       5 33 54 Using late-time optical and near-infrared spectra to constrain Type Ia supernova explosion properties. MAGUIRE K., SIM S.A., SHINGLES L., et al.
2018ApJ...861...78M 824       S   X C       18 9 16 Type Ia supernovae in the first few days: signatures of helium detonation versus interaction. MAEDA K., JIANG J.-A., SHIGEYAMA T., et al.
2018ApJ...861..104H 82           X         2 16 14 The Carnegie-Chicago Hubble Program. IV. The distance to NGC 4424, NGC 4526, and NGC 4356 via the tip of the Red Giant Branch. HATT D., FREEDMAN W.L., MADORE B.F., et al.
2018ApJ...861..143L 221           X C       4 6 92 Explosive nucleosynthesis in near-Chandrasekhar-mass white dwarf models for Type Ia supernovae: dependence on model parameters. LEUNG S.-C. and NOMOTO K.
2018ApJ...863...20J 82             C       1 60 5 SPIRITS 16tn in NGC 3556: a heavily obscured and low-luminosity supernova at 8.8 Mpc. JENCSON J.E., KASLIWAL M.M., ADAMS S.M., et al.
2018ApJ...863..176M 412           X C       9 9 2 Nucleosynthesis constraints on the explosion mechanism for Type Ia supernovae. MORI K., FAMIANO M.A., KAJINO T., et al.
2018ApJ...864L..35S 17       D               1 26 51 Red versus blue: early observations of thermonuclear supernovae reveal two distinct populations? STRITZINGER M.D., SHAPPEE B.J., PIRO A.L., et al.
2018MNRAS.479..517P 469       D     X C F     10 82 6 Swift UVOT grism observations of nearby Type Ia supernovae - I. Observations and data reduction. PAN Y.-C., FOLEY R.J., FILIPPENKO A.V., et al.
2018ApJ...865..149J 840       D     X C       20 54 13 Surface radioactivity or interactions? Multiple origins of early-excess Type Ia supernovae and associated subclasses. JIANG J.-A., DOI M., MAEDA K., et al.
2018ApJ...866...10G 82           X         2 7 5 Late-time observations of ASASSN-14lp strengthen the case for a correlation between the peak luminosity of Type Ia supernovae and the shape of their late-time light curves. GRAUR O., ZUREK D.R., CARA M., et al.
2018ApJ...866..145H 41           X         1 20 11 The Carnegie-Chicago Hubble Program. V. The distances to NGC 1448 and NGC 1316 via the Tip of the Red Giant Branch. HATT D., FREEDMAN W.L., MADORE B.F., et al.
2018MNRAS.481..878Z 329           X   F     7 31 4 SN 2014J in M82: new insights on the spectral diversity of Type Ia supernovae. ZHANG K., WANG X., ZHANG J., et al.
2018ApJ...868...90T 82           X         2 16 6 Three-dimensional simulation of double detonations in the double-degenerate model for Type Ia supernovae and interaction of ejecta with a surviving white dwarf companion. TANIKAWA A., NOMOTO K. and NAKASATO N.
2018A&A...619A.102D 43           X         1 6 12 Nebular spectroscopy of SN 2014J: Detection of stable nickel in near-infrared spectra. DHAWAN S., FLORS A., LEIBUNDGUT B., et al.
2018ApJ...869...56B viz 16       D               2 176 128 The Carnegie Supernova Project: absolute calibration and the Hubble constant. BURNS C.R., PARENT E., PHILLIPS M.M., et al.
2018A&A...620A.200F 346       D     X C       8 14 4 Limits on stable iron in Type Ia supernovae from near-infrared spectroscopy. FLORS A., SPYROMILIO J., MAGUIRE K., et al.
2019ApJ...870L...1D viz 90           X         2 14 84 K2 observations of SN 2018oh reveal a two-component rising light curve for a Type Ia supernova. DIMITRIADIS G., FOLEY R.J., REST A., et al.
2019ApJ...870...12L 463           X C       10 19 62 Photometric and spectroscopic properties of Type Ia supernova 2018oh with early excess emission from the Kepler 2 observations. LI W., WANG X., VINKO J., et al.
2019ApJ...870...13S viz 88           X         2 17 71 Seeing double: ASASSN-18bt exhibits a two-component rise in the early-time K2 light curve. SHAPPEE B.J., HOLOIEN T.W.-S., DROUT M.R., et al.
2019ApJ...870...14G 226       D     X         6 7 6 Late-time observations of the Type Ia supernova SN 2014J with the Hubble Space Telescope Wide Field Camera 3. GRAUR O.
2019ApJ...871...62G 184       D     X         5 92 36 Delayed circumstellar interaction for Type Ia SN 2015cp revealed by an HST ultraviolet imaging survey. GRAHAM M.L., HARRIS C.E., NUGENT P.E., et al.
2019MNRAS.482.5651M 294           X C F     5 14 20 Subdwarf B stars as possible surviving companions in Type Ia supernova remnants. MENG X. and LI J.
2019ApJ...872L...7L 43           X         1 4 4 Explaining the early excess emission of the Type Ia supernova 2018oh by the interaction of the ejecta with disk-originated matter. LEVANON N. and SOKER N.
2019PASP..131a4002H viz 100       D     X         3 173 56 Carnegie Supernova Project-II: the near-infrared spectroscopy program. HSIAO E.Y., PHILLIPS M.M., MARION G.H., et al.
2019A&A...622A..35L 42           X         1 8 7 The progenitors of type-Ia supernovae in semidetached binaries with red giant donors. LIU D., WANG B., GE H., et al.
2019ApJ...874...32R viz 17       D               2 275 12 Think global, act local: the influence of environment age and host mass on Type Ia supernova light curves. ROSE B.M., GARNAVICH P.M. and BERG M.A.
2019ApJ...875...59Y 84             C       1 546 5 Optical follow-up of gravitational-wave events During the second Advanced LIGO/VIRGO observing run with the DLT40 survey. YANG S., SAND D.J., VALENTI S., et al.
2019ApJS..241...38S viz 17       D               2 220 38 A comprehensive analysis of Spitzer supernovae. SZALAI T., ZSIROS S., FOX O.D., et al.
2019ApJ...877L...4S 17       D               1 31 7 Nebular Hα limits for fast declining SNe Ia. SAND D.J., AMARO R.C., MOE M., et al.
2019MNRAS.487.1886C 6646 T K A D S   X C F     156 19 ~ Optical and UV studies of type Ia supernovae SN 2009ig and
SN 2012cg.
CHAKRADHARI N.K., SAHU D.K. and ANUPAMA G.C.
2019MNRAS.487.2372V 126           X         3 28 53 ASASSN-18tb: a most unusual Type Ia supernova observed by TESS and SALT. VALLELY P.J., FAUSNAUGH M., JHA S.W., et al.
2019A&A...627A.174H viz 84           X         2 19 15 Discovery and progenitor constraints on the Type Ia supernova 2013gy. HOLMBO S., STRITZINGER M.D., SHAPPEE B.J., et al.
2019ApJ...881...45K 43           X         1 22 41 Evidence for sub-Chandrasekhar Type Ia supernovae from stellar abundances in dwarf galaxies. KIRBY E.N., XIE J.L., GUO R., et al.
2019ApJ...882...30L viz 42           X         1 15 ~ Observations of Type Ia supernova 2014J for nearly 900 days and constraints on its progenitor system. LI W., WANG X., HU M., et al.
2019ApJ...882...34F 25       D               1 70 582 The Carnegie-Chicago Hubble Program. VIII. An independent determination of the Hubble constant based on the tip of the red giant branch. FREEDMAN W.L., MADORE B.F., HATT D., et al.
2019A&A...630A..92B viz 84             C       2 27 7 The Hubble Catalog of Variables (HCV). BONANOS A.Z., YANG M., SOKOLOVSKY K.V., et al.
2019ApJ...885..103T 84           X         2 15 ~ Double-detonation models for Type Ia supernovae: trigger of detonation in companion white dwarfs and signatures of companions' stripped-off materials. TANIKAWA A., NOMOTO K., NAKASATO N., et al.
2019MNRAS.490.3882S 351       D S   X   F     7 182 57 Lick Observatory Supernova Search follow-up program: photometry data release of 93 Type Ia supernovae. STAHL B.E., ZHENG W., DE JAEGER T., et al.
2020ApJ...888...80L 585     A S   X C       12 7 47 Explosive nucleosynthesis in sub-Chandrasekhar-mass white dwarf models for Type Ia supernovae: dependence on model parameters. LEUNG S.-C. and NOMOTO K.
2020MNRAS.491.2902F viz 102       D     X         3 68 46 Sub-Chandrasekhar progenitors favoured for Type Ia supernovae: evidence from late-time spectroscopy. FLORS A., SPYROMILIO J., TAUBENBERGER S., et al.
2020MNRAS.491.5897P 102       D     X         3 59 ~ Swift UVOT grism observations of nearby Type Ia supernovae - II. Probing the progenitor metallicity of SNe Ia with ultraviolet spectra. PAN Y.-C., FOLEY R.J., JONES D.O., et al.
2020ApJ...890..159L 1251       D S   X C       28 63 23 The deepest radio observations of nearby SNe Ia: constraining progenitor types and optimizing future surveys. LUNDQVIST P., KUNDU E., PEREZ-TORRES M.A., et al.
2020MNRAS.492.3553V 315       D     X C       7 56 6 Signatures of bimodality in nebular phase Type Ia supernova spectra. VALLELY P.J., TUCKER M.A., SHAPPEE B.J., et al.
2020MNRAS.492.4325S viz 60       D     X         2 247 24 Berkeley supernova Ia program: data release of 637 spectra from 247 Type Ia supernovae. STAHL B.E., ZHENG W., DE JAEGER T., et al.
2020A&A...634A..37M viz 187       D     X         5 35 32 Determining the 56Ni distribution of type Ia supernovae from observations within days of explosion. MAGEE M.R., MAGUIRE K., KOTAK R., et al.
2020ApJ...892..142H 255           X C       5 24 ~ SN 2017cfd: a normal Type Ia supernova discovered very young. HAN X., ZHENG W., STAHL B.E., et al.
2020ApJ...894...39C 85           X         2 19 ~ Thirty years of radio observations of Type Ia SN 1972E and SN 1895B: constraints on circumstellar shells. CENDES Y., DROUT M.R., CHOMIUK L., et al.
2020NatAs...4..188G 298           X C       6 21 17 A year-long plateau in the late-time near-infrared light curves of type Ia supernovae. GRAUR O., MAGUIRE K., RYAN R., et al.
2020MNRAS.493.1044T viz 17       D               1 116 49 Nebular spectra of 111 Type Ia supernovae disfavour single-degenerate progenitors. TUCKER M.A., SHAPPEE B.J., VALLELY P.J., et al.
2020ApJ...895L...5P 17       D               1 219 18 High-velocity Type Ia supernova has a unique host environment. PAN Y.-C.
2020ApJ...902...46Y viz 44           X         1 28 32 The young and nearby normal Type Ia Supernova 2018gv: uv-optical observations and the earliest spectropolarimetry. YANG Y., HOEFLICH P., BAADE D., et al.
2020MNRAS.499.1424H viz 17       D               1 408 ~ Supernovae and their host galaxies - VII. The diversity of Type Ia supernova progenitors. HAKOBYAN A.A., BARKHUDARYAN L.V., KARAPETYAN A.G., et al.
2020A&A...642A.189M 49           X         1 5 31 An investigation of 56Ni shells as the source of early light curve bumps in type Ia supernovae. MAGEE M.R. and MAGUIRE K.
2020ApJ...904...14W viz 383           X C       8 21 12 Optical and near-infrared observations of the nearby SN Ia 2017cbv. WANG L., CONTRERAS C., HU M., et al.
2020ApJ...904...29M 43           X         1 6 ~ Screening effects on electron capture rates and Type Ia supernova nucleosynthesis. MORI K., SUZUKI T., HONMA M., et al.
2021MNRAS.500.1095H 409       D     X         10 55 5 The value of the Hubble-Lemaitre constant queried by Type Ia supernovae: a journey from the Calan-Tololo Project to the Carnegie Supernova Program. HAMUY M., CARTIER R., CONTRERAS C., et al.
2021ApJ...906...99L 61       D     X         2 22 17 Can the helium-detonation model explain the observed diversity of Type Ia supernovae? LI W., WANG X., BULLA M., et al.
2021ApJ...908...51F viz 132           X         3 46 51 Early-time light curves of Type Ia supernovae observed with TESS. FAUSNAUGH M.M., VALLELY P.J., KOCHANEK C.S., et al.
2021MNRAS.502.4112B 61       D     X         2 19 1 Light-curve properties of SN 2017fgc and HV SNe Ia. BURGAZ U., MAEDA K., KALOMENI B., et al.
2021ApJ...909..152L 218           X         5 13 ~ Exploration of aspherical ejecta properties in Type Ia supernovae: progenitor dependence and applications to progenitor classification. LEUNG S.-C., DIEHL R., NOMOTO K., et al.
2021ApJ...909..176Z viz 435           X C       9 18 2 SN 2017hpa: a nearby carbon-rich Type Ia supernova with a large velocity gradient. ZENG X., WANG X., ESAMDIN A., et al.
2021A&A...647A..72K 280       D     X         7 68 81 A new measurement of the Hubble constant using Type Ia supernovae calibrated with surface brightness fluctuations. KHETAN N., IZZO L., BRANCHESI M., et al.
2021ApJ...910..151M viz 87           X         2 20 ~ Rapidly declining hostless Type Ia supernova KSP-OT-201509b from the KMTNet Supernova Program: transitional nature and constraint on 56Ni distribution and progenitor Type. MOON D.-S., NI Y.Q., DROUT M.R., et al.
2021ATel14325....1P 44           X         1 10 ~ A very stringent upper limit to the mass-loss rate of the Type Ia SN2021J from e-MERLIN radio observations. PEREZ-TORRES M., MOLDON J., LUNDQVIST P., et al.
2021MNRAS.506.4321S 44           X         1 18 15 Evidence for sub-Chandrasekhar Type Ia supernovae from the last major merger. SANDERS J.L., BELOKUROV V. and MAN K.T.F.
2021MNRAS.507.4367C 453       D     X   F     10 79 6 Probing the progenitors of Type Ia supernovae using circumstellar material interaction signatures. CLARK P., MAGUIRE K., BULLA M., et al.
2021ApJ...919..142B 87           X         2 22 17 A bright ultraviolet excess in the transitional 02es-like Type Ia Supernova 2019yvq. BURKE J., HOWELL D.A., SARBADHICARY S.K., et al.
2021MNRAS.508.1590P 44           X         1 13 ~ Prospects of direct detection of 48V gamma-rays from thermonuclear supernovae. PANTHER F.H., SEITENZAHL I.R., RUITER A.J., et al.
2021MNRAS.508.3649D 174           X         4 22 ~ Blast from the past: constraining progenitor models of SN 1972E. DO A., SHAPPEE B.J., DE CUYPER J.-P., et al.
2021ApJ...922...21S viz 174           X C       3 18 11 Circumstellar medium constraints on the environment of two nearby Type Ia supernovae: SN 2017cbv and SN 2020nlb. SAND D.J., SARBADHICARY S.K., PELLEGRINO C., et al.
2021A&A...656A..94G viz 143           X C       2 2 24 Metallicity-dependent nucleosynthetic yields of Type Ia supernovae originating from double detonations of sub-MCh white dwarfs. GRONOW S., COTE B., LACH F., et al.
2021ApJ...923...86C viz 17       D               1 813 3 Local environments of low-redshift supernovae. CRONIN S.A., UTOMO D., LEROY A.K., et al.
2021ApJ...923..210H 192       D     X C       4 12 10 Physics of thermonuclear explosions: magnetic field effects on deflagration fronts and observable consequences. HRISTOV B., HOEFLICH P. and COLLINS D.C.
2022MNRAS.510.4779S 18       D               2 445 ~ Type Ia supernova magnitude step from the local dark matter environment. STEIGERWALD H., RODRIGUES D., PROFUMO S., et al.
2022MNRAS.513.3035M 46           X         1 6 6 The detection efficiency of Type Ia supernovae from the Zwicky Transient Facility: limits on the intrinsic rate of early flux excesses. MAGEE M.R., CUDDY C., MAGUIRE K., et al.
2022PASP..134e4201B 134           X   F     2 17 2 Initial Ni-56 Masses in Type Ia Supernovae. BORA Z., VINKO J. and KONYVES-TOTH R.
2022ApJ...930...92F 45           X         1 17 6 The Double Detonation of a Double-degenerate System, from Type Ia Supernova Explosion to its Supernova Remnant. FERRAND G., TANIKAWA A., WARREN D.C., et al.
2022MNRAS.514.3541S 179           X C       3 14 13 Observations of the very young Type Ia Supernova 2019np with early-excess emission. SAI H., WANG X., ELIAS-ROSA N., et al.
2022ApJ...932L...2A 225           X C       4 16 23 A Speed Bump: SN 2021aefx Shows that Doppler Shift Alone Can Explain Early Excess Blue Flux in Some Type Ia Supernovae. ASHALL C., LU J., SHAPPEE B.J., et al.
2022ApJ...933L..45H 180           X C       3 18 21 Constraining the Progenitor System of the Type Ia Supernova 2021aefx. HOSSEINZADEH G., SAND D.J., LUNDQVIST P., et al.
2022ApJ...934L...7R 24       D               1 105 637 A Comprehensive Measurement of the Local Value of the Hubble Constant with 1 km s–1 Mpc–1 Uncertainty from the Hubble Space Telescope and the SH0ES Team. RIESS A.G., YUAN W., MACRI L.M., et al.
2022PASP..134g4201Z 45           X         1 25 4 Optical Observations of the Nearby Type Ia Supernova 2021hpr. ZHANG Y., ZHANG T., DANZENGLUOBU, et al.
2022ApJ...935...58M 91               F     2 22 34 The Hubble Tension Revisited: Additional Local Distance Ladder Uncertainties. MORTSELL E., GOOBAR A., JOHANSSON J., et al.
2022MNRAS.515.3703T 1210     A D     X C F     26 14 4 The late-time light curves of Type Ia supernovae: confronting models with observations. TIWARI V., GRAUR O., FISHER R., et al.
2022MNRAS.515.4445A 45           X         1 16 2 Abundance stratification in Type Ia supernovae - VI. The peculiar slow decliner SN 1999aa. AOUAD C.J., MAZZALI P.A., HACHINGER S., et al.
2022MNRAS.516.4822R 63       D     X         2 25 7 Constraining RV variation using highly reddened Type Ia supernovae from the Pantheon+ sample. ROSE B.M., POPOVIC B., SCOLNIC D., et al.
2022ApJ...941L..33A 45           X         1 21 1 White Dwarf-Red Giant Star Binaries as Type Ia Supernova Progenitors: With and without Magnetic Confinement. ABLIMIT I., PODSIADLOWSKI P., DI STEFANO R., et al.
2023ApJ...944..110M 112       D     X         3 110 4 Comparing the Locations of Supernovae to CO (2-1) Emission in Their Host Galaxies. MAYKER CHEN N., LEROY A.K., LOPEZ L.A., et al.
2023ApJ...944L..28M 47           X         1 15 ~ Serendipitous Nebular-phase JWST Imaging of SN Ia SN 2021aefx: Testing the Confinement of 56Co Decay Energy. MAYKER CHEN N., TUCKER M.A., HOYER N., et al.
2023MNRAS.521.1162D 47           X         1 30 9 SN 2021zny: an early flux excess combined with late-time oxygen emission suggests a double white dwarf merger event. DIMITRIADIS G., MAGUIRE K., KARAMBELKAR V.R., et al.
2023ApJ...946...83L 47           X         1 23 4 SN 2020jgb: A Peculiar Type Ia Supernova Triggered by a Helium-shell Detonation in a Star-forming Galaxy. LIU C., MILLER A.A., POLIN A., et al.
2023MNRAS.521.4414D 205       D     X   F     4 24 ~ Photometric study of the late-time near-infrared plateau in Type Ia supernovae. DECKERS M., GRAUR O., MAGUIRE K., et al.
2023ApJ...949...33L 373           X         8 25 3 The Early Light Curve of the Type Ia Supernova 2021hpr in NGC 3147: Progenitor Constraints with the Companion Interaction Model. LIM G., IM M., PAEK G.S.H., et al.
2023ApJ...952...24H 47           X         1 22 ~ Radio Observations of Six Young Type Ia Supernovae. HARRIS C.E., SARBADHICARY S.K., CHOMIUK L., et al.
2023MNRAS.524..235D 112       D         F     5 136 ~ A BayeSN distance ladder: H0 from a consistent modelling of Type Ia supernovae from the optical to the near-infrared. DHAWAN S., THORP S., MANDEL K.S., et al.
2023RAA....23h2001L 233           X         5 78 ~ Type Ia Supernova Explosions in Binary Systems: A Review. LIU Z.-W., ROPKE F.K. and HAN Z.
2023ApJ...953L..15H 187           X C       3 15 ~ The Early Light Curve of SN 2023bee: Constraining Type Ia Supernova Progenitors the Apian Way. HOSSEINZADEH G., SAND D.J., SARBADHICARY S.K., et al.
2023ApJ...954L..31S 19       D               1 37 ~ CATS: The Hubble Constant from Standardized TRGB and Type Ia Supernova Measurements. SCOLNIC D., RIESS A.G., WU J., et al.
2023MNRAS.525..246H 765       D     X C F     15 11 ~ Possible circumstellar interaction origin of the early excess emission in thermonuclear supernovae. HU M., WANG L., WANG X., et al.
2023NatAs...7.1098G 93             C       1 4 ~ Uncovering a population of gravitational lens galaxies with magnified standard candle SN Zwicky. GOOBAR A., JOHANSSON J., SCHULZE S., et al.
2023ApJ...955...49O 19       D               5 17 ~ Systematic Investigation of Very-early-phase Spectra of Type Ia Supernovae. OGAWA M., MAEDA K. and KAWABATA M.
2023MNRAS.526.1268L 112       D         F     5 72 ~ Implications for the explosion mechanism of Type Ia supernovae from their late-time spectra. LIU J., WANG X., FILIPPENKO A.V., et al.
2023ApJ...956..108F 47           X         1 57 ~ Four Years of Type Ia Supernovae Observed by TESS: Early-time Light-curve Shapes and Constraints on Companion Interaction Models. FAUSNAUGH M.M., VALLELY P.J., TUCKER M.A., et al.
2023ApJ...958..173S 187           X C       3 19 ~ An Asymmetric Double-degenerate Type Ia Supernova Explosion with a Surviving Companion Star. SIEBERT M.R., FOLEY R.J., ZENATI Y., et al.
2023A&A...679A..95G viz 19       D               2 152 ~ An updated measurement of the Hubble constant from near-infrared observations of Type Ia supernovae. GALBANY L., DE JAEGER T., RIESS A.G., et al.
2024ApJ...961..185L 20       D               1 275 ~ Environmental Dependence of Type Ia Supernovae in Low-redshift Galaxy Clusters. LARISON C., JHA S.W., KWOK L.A., et al.

goto View the references in ADSLimited to 100