SN 2013fs , the SIMBAD biblio

SN 2013fs , the SIMBAD biblio (111 results) C.D.S. - SIMBAD4 rel 1.8 - 2024.04.19CEST12:25:33


Sort references on where and how often the object is cited
trying to find the most relevant references on this object.
More on score
Bibcode/DOI Score in Title|Abstract|
Keywords
in a table in teXt, Caption, ... Nb occurence Nb objects in ref Citations
(from ADS)
Title First 3 Authors
2015MNRAS.448.2608V viz 17       D               1 21 53 Supernova 2013by: a Type IIL supernova with a IIP-like light-curve drop. VALENTI S., SAND D., STRITZINGER M., et al.
2013ATel.5455....1C 39           X         1 5 2 Spectroscopic Classification of 3 Supernovae with WiFeS. CHILDRESS M., SCALZO R., YUAN F., et al.
2013ATel.5527....1C 156 T         X         3 2 2
SN 2013fs now resembles a SN IIP.
CHILDRESS M., SCALZO R., YUAN F., et al.
2016ApJ...818....3K 102       D       C       2 24 153 Flash spectroscopy: emission lines from the ionized circumstellar material around <10-day-old Type II supernovae. KHAZOV D., YARON O., GAL-YAM A., et al.
2016MNRAS.456.2848H viz 16       D               1 919 37 Supernovae and their host galaxies - III. The impact of bars and bulges on the radial distribution of supernovae in disc galaxies. HAKOBYAN A.A., KARAPETYAN A.G., BARKHUDARYAN L.V., et al.
2016ApJ...820...33R viz 217       D     X C       5 70 56 Type II supernova energetics and comparison of light curves to shock-cooling models. RUBIN A., GAL-YAM A., DE CIA A., et al.
2016ApJ...820...74D 578       D S   X         14 24 4 Characterizing mid-ultraviolet to optical light curves of nearby Type IIn supernovae. DE LA ROSA J., ROMING P., PRITCHARD T., et al.
2016A&A...587L...7T viz 16       D               2 78 6 Metallicity from Type II supernovae from the (i)PTF. TADDIA F., MOQUIST P., SOLLERMAN J., et al.
2016MNRAS.459.3939V viz 900   K   D     X C F     21 210 225 The diversity of Type II supernova versus the similarity in their progenitors. VALENTI S., HOWELL D.A., STRITZINGER M.D., et al.
2017ApJ...838...28M 973   K   D S   X C       22 6 140 Unifying Type II supernova light curves with dense circumstellar material. MOROZOVA V., PIRO A.L. and VALENTI S.
2017ApJ...841..127M 304       D     X C       7 26 80 The nickel mass distribution of normal Type II supernovae. MULLER T., PRIETO J.L., PEJCHA O., et al.
2017MNRAS.470.1642F 51           X         1 14 147 Pre-supernova outbursts via wave heating in massive stars - I. Red supergiants. FULLER J.
2017MNRAS.469L.108M 1301   K A S   X C       30 2 37 Immediate dense circumstellar environment of supernova progenitors caused by wind acceleration: its effect on supernova light curves. MORIYA T.J., YOON S.-C., GRAFENER G., et al.
2017ApJ...848....5B 41           X         1 20 ~ The transition of a Type IIL supernova into a supernova remnant: late-time observations of SN 2013by. BLACK C.S., MILISAVLJEVIC D., MARGUTTI R., et al.
2017ApJ...848....6Y 44           X         1 23 91 Hydrogen-poor superluminous supernovae with late-time Hα emission: three events from the intermediate Palomar Transient Factory. YAN L., LUNNAN R., PERLEY D.A., et al.
2017ApJ...848....8R 84           X         2 5 15 Exploring the efficacy and limitations of shock-cooling models: new analysis of Type II supernovae observed by the Kepler mission. RUBIN A. and GAL-YAM A.
2017A&A...605A..83D 940           X C       22 10 65 Explosion of red-supergiant stars: Influence of the atmospheric structure on shock breakout and early-time supernova radiation. DESSART L., HILLIER D.J. and AUDIT E.
2017MNRAS.472.5004U 41           X         1 15 5 Luminous Type IIP SN 2013ej with high-velocity 56Ni ejecta. UTROBIN V.P. and CHUGAI N.N.
2018PASP..130c4202A 82             C       1 52 8 IPTF survey for cool transients. ADAMS S.M., BLAGORODNOVA N., KASLIWAL M.M., et al.
2018MNRAS.476.1497B 4404 T K A D S   X C F     104 31 9
SN 2013fs and SN 2013fr: exploring the circumstellar-material diversity in Type II supernovae.
BULLIVANT C., SMITH N., WILLIAMS G.G., et al.
2018MNRAS.476.2840M 374           X         9 4 16 Type IIP supernova light curves affected by the acceleration of red supergiant winds. MORIYA T.J., FORSTER F., YOON S.-C., et al.
2018ApJ...858...15M 127           X         3 23 111 Measuring the progenitor masses and dense circumstellar material of Type II supernovae. MOROZOVA V., PIRO A.L. and VALENTI S.
2018Natur.554..497B 8 9 72 A surge of light at the birth of a supernova. BERSTEN M.C., FOLATELLI G., GARCIA F., et al.
2018ApJ...859...78N 123           X         3 22 10 The low-luminosity Type IIP Supernova 2016bkv with early-phase circumstellar interaction. NAKAOKA T., KAWABATA K.S., MAEDA K., et al.
2018ApJ...861...63H viz 126           X         3 14 55 Short-lived circumstellar interaction in the low-luminosity Type IIP SN 2016bkv. HOSSEINZADEH G., VALENTI S., McCULLY C., et al.
2018MNRAS.478.3776D 412           X C       9 13 8 SN 2016esw: a luminous Type II supernova observed within the first day after the explosion. DE JAEGER T., GALBANY L., GUTIERREZ C.P., et al.
2018A&A...617A.115B 41           X         1 30 8 Catching a star before explosion: the luminous blue variable progenitor of SN 2015bh. BOIAN I. and GROH J.H.
2018A&A...617A.137F 82           X         2 129 10 An ALMA 3 mm continuum census of Westerlund 1. FENECH D.M., CLARK J.S., PRINJA R.K., et al.
2018NatAs...2..808F 2 32 79 The delay of shock breakout due to circumstellar material evident in most type II supernovae. FORSTER F., MORIYA T.J., MAUREIRA J.C., et al.
2018Sci...362..201D viz 2 34 79 A hot and fast ultra-stripped supernova that likely formed a compact neutron star binary. DE K., KASLIWAL M.M., OFEK E.O., et al.
2018ApJ...867....4M 247           X         6 6 5 Theoretical X-ray light curves of young SNe. II. The example of SN 2013ej. MOROZOVA V. and STONE J.M.
2018MNRAS.480.1696J 41           X         1 18 13 The quiescent progenitors of four Type II-P/L supernovae. JOHNSON S.A., KOCHANEK C.S. and ADAMS S.M.
2019MNRAS.483..887D 168           X         4 8 8 The surface abundances of red supergiants at core collapse. DAVIES B. and DESSART L.
2019A&A...621A.109B viz 84           X         2 10 3 Diversity of supernovae and impostors shortly after explosion. BOIAN I. and GROH J.H.
2019MNRAS.483.3762K 1029   K A     X C       24 6 6 The physics of flash (supernova) spectroscopy. KOCHANEK C.S.
2019A&A...621A.141D 44           X         1 16 33 Simulations of light curves and spectra for superluminous Type Ic supernovae powered by magnetars. DESSART L.
2019ApJ...872..157W 168           X         4 1 1 Transient high-energy gamma-rays and neutrinos from nearby Type II supernovae. WANG K., HUANG T.-Q. and LI Z.
2019ApJ...873..127T 42           X         1 28 7 Supernova 2017eaw: molecule and dust formation from infrared observations. TINYANONT S., KASLIWAL M.M., KRAFTON K., et al.
2019ApJ...874...80M 43           X         1 5 7 High-energy emission from interacting supernovae: new constraints on cosmic-ray acceleration in dense circumstellar environments. MURASE K., FRANCKOWIAK A., MAEDA K., et al.
2019MNRAS.485.1990R 294           X C       6 20 27 Probing the final-stage progenitor evolution for Type IIP Supernova 2017eaw in NGC 6946. RUI L., WANG X., MO J., et al.
2019ApJ...876...19S 394       D     X         10 22 37 The Type II-P supernova 2017eaw: from explosion to the nebular phase. SZALAI T., VINKO J., KONYVES-TOTH R., et al.
2019MNRAS.485.5120B 84           X         2 20 2 Signatures of circumstellar interaction in the Type IIL supernova ASASSN-15oz. BOSTROEM K.A., VALENTI S., HORESH A., et al.
2019ApJ...881...22A viz 84             C       2 19 ~ KSP-SN-2016kf: a long-rising H-rich Type II supernova with unusually high 56Ni mass discovered in the KMTNet Supernova Program. AFSARIARDCHI N., MOON D.-S., DROUT M.R., et al.
2019MNRAS.488.4239P viz 184   K   D     X         5 106 19 Comparison of the optical light curves of hydrogen-rich and hydrogen-poor type II supernovae. PESSI P.J., FOLATELLI G., ANDERSON J.P., et al.
2019MNRAS.489..641M 17       D               1 42 ~ A comparison of explosion energies for simulated and observed core-collapse supernovae. MURPHY J.W., MABANTA Q. and DOLENCE J.C.
2019ApJ...885...13T 42           X         1 20 ~ A rapidly declining transient discovered with the Subaru/Hyper Suprime-Cam. TOMINAGA N., MOROKUMA T., TANAKA M., et al.
2019ApJ...885...41M 84           X         2 3 ~ Radio emission from supernovae in the very early phase: implications for the dynamical mass loss of massive stars. MATSUOKA T., MAEDA K., LEE S.-H., et al.
2019ApJ...885...43A viz 460           X C       10 36 30 SN 2017gmr: an energetic Type II-P supernova with asymmetries. ANDREWS J.E., SAND D.J., VALENTI S., et al.
2019A&A...631A...8H 44           X         1 19 38 Photometric and spectroscopic diversity of Type II supernovae. HILLIER D.J. and DESSART L.
2019MNRAS.489.5802V 17       D               1 72 28 Spectrophotometric templates for core-collapse supernovae and their application in simulations of time-domain surveys. VINCENZI M., SULLIVAN M., FIRTH R.E., et al.
2019ApJ...886...27W viz 84           X         2 178 ~ Type IIP supernova progenitors and their explodability. I. Convective overshoot, blue loops, and surface composition. WAGLE G.A., RAY A., DEV A., et al.
2019ApJ...887....4D 17       D               4 73 ~ Carnegie Supernova Project-II: near-infrared spectroscopic diversity of Type II supernovae. DAVIS S., HSIAO E.Y., ASHALL C., et al.
2019ApJ...887..169H viz 44           X         1 23 59 Evidence for late-stage eruptive mass loss in the progenitor to SN2018gep, a broad-lined IC supernova: pre-explosion emission and a rapidly rising luminous transient. HO A.Y.Q., GOLDSTEIN D.A., SCHULZE S., et al.
2020MNRAS.491.6000S 85           X         2 37 27 Origins of Type Ibn SNe 2006jc/2015G in interacting binaries and implications for pre-SN eruptions. SUN N.-C., MAUND J.R., HIRAI R., et al.
2020ApJ...890..177K 43           X         1 19 ~ A new method to classify Type IIP/IIL supernovae based on their spectra. KOU S., CHEN X. and LIU X.
2020ApJ...891L..32M 140           X C       2 3 37 The influence of late-stage nuclear burning on red supergiant supernova light curves. MOROZOVA V., PIRO A.L., FULLER J., et al.
2020MNRAS.494L..86C 621 T K A     X         14 6 ~ The explosion energy of the type IIP supernova
SN 2013fs with a confined dense circumstellar shell.
CHUGAI N.N.
2020MNRAS.496.1325B 826       D     X C       19 35 19 Progenitors of early-time interacting supernovae. BOIAN I. and GROH J.H.
2020MNRAS.498...84Z 597           X C       13 19 23 SN 2018zd: an unusual stellar explosion as part of the diverse Type II Supernova landscape. ZHANG J., WANG X., JOZSEF V., et al.
2020A&A...641A.177M viz 17       D               1 288 ~ Stripped-envelope core-collapse supernova 56Ni masses. Persistently larger values than supernovae type II. MEZA N. and ANDERSON J.P.
2020ApJ...902....6S viz 642           X C       14 6 20 SN 2018fif: the explosion of a large red supergiant discovered in its infancy by the Zwicky Transient Facility. SOUMAGNAC M.T., GANOT N., IRANI I., et al.
2020MNRAS.499.1450P 85               F     1 24 13 SN 2018gjx reveals that some SNe Ibn are SNe IIb exploding in dense circumstellar material. PRENTICE S.J., MAGUIRE K., BOIAN I., et al.
2020A&A...642A.214K 85           X         2 21 15 Supernova explosions interacting with aspherical circumstellar material: implications for light curves, spectral line profiles, and polarization. KURFURST P., PEJCHA O. and KRTICKA J.
2021ApJ...906....1S 131           X         3 9 ~ A pre-explosion extended effervescent zone around core-collapse supernova progenitors. SOKER N.
2021ApJ...908...75B 17       D               1 556 32 The radio luminosity-risetime function of core-collapse supernovae. BIETENHOLZ M.F., BARTEL N., ARGO M., et al.
2021MNRAS.503..797K 131           X C       2 12 ~ Synthetic observables for electron-capture supernovae and low-mass core collapse supernovae. KOZYREVA A., BAKLANOV P., JONES S., et al.
2021ApJ...912...46B viz 132           X         3 39 67 A large fraction of hydrogen-rich supernova progenitors experience elevated mass loss shortly prior to explosion. BRUCH R.J., GAL-YAM A., SCHULZE S., et al.
2021MNRAS.504.2014C 131   K       X         3 4 ~ Confined massive circumstellar shell in type IIL SN 2008fq. CHUGAI N.N.
2021ApJ...913...55H 175           X C       3 15 20 Luminous Type II short-plateau supernovae 2006Y, 2006ai, and 2016egz: a transitional class from stripped massive red supergiants. HIRAMATSU D., HOWELL D.A., MORIYA T.J., et al.
2021MNRAS.505..116U 174           X         4 16 ~ Enormous explosion energy of Type IIP SN 2017gmr with bipolar 56Ni ejecta. UTROBIN V.P., CHUGAI N.N., ANDREWS J.E., et al.
2021MNRAS.505.1742R 17       D               3 264 9 The iron yield of normal Type II supernovae. RODRIGUEZ O., MEZA N., PINEDA-GARCIA J., et al.
2021MNRAS.505.4890L 696           X C F     14 12 3 SN 2015bf: A fast declining type II supernova with flash-ionized signatures. LIN H., WANG X., ZHANG J., et al.
2021ApJS..255...29S viz 17       D               1 893 63 The Palomar Transient Factory core-collapse supernova host-galaxy sample. I. Host-galaxy distribution functions and environment dependence of core-collapse supernovae. SCHULZE S., YARON O., SOLLERMAN J., et al.
2021A&A...651A..10D 44           X         1 10 ~ Polarization signatures of a high-velocity scatterer in nebular-phase spectra of Type II supernovae. DESSART L., HILLIER D.J. and LEONARD D.C.
2021MNRAS.506.4715R 87           X         2 92 9 A systematic reclassification of Type IIn supernovae. RANSOME C.L., HABERGHAM-MAWSON S.M., DARNLEY M.J., et al.
2021NatAs...5..903H 133           X C       2 19 47 The electron-capture origin of supernova 2018zd. HIRAMATSU D., HOWELL D.A., VAN DYK S.D., et al.
2021MNRAS.507.3726D 87           X         2 13 ~ The origins of low-luminosity supernovae: the case of SN 2016bkv. DECKERS M., GROH J.H., BOIAN I., et al.
2022ApJ...924...15J viz 315           X         7 30 53 Final moments. I. Precursor emission, envelope inflation, and enhanced mass loss preceding the luminous Type II Supernova 2020tlf. JACOBSON-GALAN W.V., DESSART L., JONES D.O., et al.
2022MNRAS.510.3276P 90           X         2 3 2 Supernovae in colliding-wind binaries: observational signatures in the first year. PEJCHA O., CALDERON D. and KURFURST P.
2022ApJ...926...20T 897           X C       19 16 25 The Early Phases of Supernova 2020pni: Shock Ionization of the Nitrogen-enriched Circumstellar Material. TERRERAN G., JACOBSON-GALAN W.V., GROH J.H., et al.
2022ApJ...927...10I viz 45           X         1 34 11 Less Than 1% of Core-collapse Supernovae in the Local Universe Occur in Elliptical Galaxies. IRANI I., PRENTICE S.J., SCHULZE S., et al.
2022ApJ...928..122M 271           X C       5 5 12 Optical to X-Ray Signatures of Dense Circumstellar Interaction in Core-collapse Supernovae. MARGALIT B., QUATAERT E. and HO A.Y.Q.
2022A&A...660L...9D 181           X         4 8 21 Modeling the signatures of interaction in Type II supernovae: UV emission, high-velocity features, broad-boxy profiles. DESSART L. and HILLIER D.J.
2022A&A...660A..40M 45           X         1 147 6 Type II supernovae from the Carnegie Supernova Project-I. I. Bolometric light curves of 74 SNe II using uBgVriYJH photometry. MARTINEZ L., BERSTEN M.C., ANDERSON J.P., et al.
2022MNRAS.513.4556Z 18       D               2 41 1 SN 2019va: a Type IIP Supernova with Large Influence of Nickel-56 Decay on the Plateau-phase Light Curve. ZHANG X., WANG X., SAI H., et al.
2022ApJ...930...31B 242       D     X C       5 90 3 Characterization of Supernovae Based on the Spectral-Temporal Energy Distribution: Two Possible SN Ib Subtypes. BENGYAT O. and GAL-YAM A.
2022ApJ...930...34T 179           X         4 23 7 SN 2020jfo: A Short-plateau Type II Supernova from a Low-mass Progenitor. TEJA R.S., SINGH A., SAHU D.K., et al.
2022ApJ...930..119W 45           X         1 14 13 Wave-driven Outbursts and Variability of Low-mass Supernova Progenitors. WU S.C. and FULLER J.
2022MNRAS.515..897R 18       D               2 122 8 Luminosity distribution of Type II supernova progenitors. RODRIGUEZ O.
2022ApJ...935...31H 134           X C       2 27 13 Weak Mass Loss from the Red Supergiant Progenitor of the Type II SN 2021yja. HOSSEINZADEH G., KILPATRICK C.D., DONG Y., et al.
2022ApJ...936...28T 47           X         1 3 7 3D Hydrodynamics of Pre-supernova Outbursts in Convective Red Supergiant Envelopes. TSANG B.T.-H., KASEN D. and BILDSTEN L.
2022MNRAS.517.4151C 45           X         1 23 5 The luminous type IIn supernova SN 2017hcc: Infrared bright, X-ray, and radio faint. CHANDRA P., CHEVALIER R.A., JAMES N.J.H., et al.
2022ApJ...939..105B 134       S   X         2 121 10 Seven Years of Coordinated Chandra-NuSTAR Observations of SN 2014C Unfold the Extreme Mass-loss History of Its Stellar Progenitor. BRETHAUER D., MARGUTTI R., MILISAVLJEVIC D., et al.
2023ApJ...942...17M 93           X         2 17 4 A Multiwavelength View of the Rapidly Evolving SN 2018ivc: An Analog of SN IIb 1993J but Powered Primarily by Circumstellar Interaction. MAEDA K., CHANDRA P., MORIYA T.J., et al.
2023ApJ...942...38M 252       D     X         6 19 ~ Locating Type II-P Supernovae Using the Expanding Photosphere Method. I. Comparing Distances from Different Line Velocities. MITCHELL R.C., DIDIER B., GANESH S., et al.
2023ApJ...945..107P 93             C       3 39 5 Circumstellar Medium Interaction in SN 2018lab, A Low-luminosity Type IIP Supernova Observed with TESS. PEARSON J., HOSSEINZADEH G., SAND D.J., et al.
2023MNRAS.518.5741S 19       D               2 22 5 What can Gaussian processes really tell us about supernova light curves? Consequences for Type II(b) morphologies and genealogies. STEVANCE H.F. and LEE A.
2023MNRAS.519..248A 93               F     1 46 3 Photometric and spectroscopic analysis of the Type II SN 2020jfo with a short plateau. AILAWADHI B., DASTIDAR R., MISRA K., et al.
2023ApJ...952..115T 93             C       1 8 ~ Radiative Acceleration of Dense Circumstellar Material in Interacting Supernovae. TSUNA D., MURASE K. and MORIYA T.J.
2023MNRAS.524.2161K 47           X         1 26 ~ Type II-P supernova progenitor star initial masses and SN 2020jfo: direct detection, light-curve properties, nebular spectroscopy, and local environment. KILPATRICK C.D., IZZO L., BENTLEY R.O., et al.
2023A&A...675A..33D 47           X         1 20 ~ The morphing of decay powered to interaction powered Type II supernova ejecta at nebular times. DESSART L., GUTIERREZ C.P., KUNCARAYAKTI H., et al.
2023ApJ...954L..12T 93           X         2 17 ~ Far-ultraviolet to Near-infrared Observations of SN 2023ixf: A High-energy Explosion Engulfed in Complex Circumstellar Material. TEJA R.S., SINGH A., BASU J., et al.
2023ApJ...954L..42J 233           X         5 16 ~ SN 2023ixf in Messier 101: Photo-ionization of Dense, Close-in Circumstellar Material in a Nearby Type II Supernova. JACOBSON-GALAN W.V., DESSART L., MARGUTTI R., et al.
2023A&A...677A.105D 373           X         8 10 ~ Using spectral modeling to break light-curve degeneracies of type II supernovae interacting with circumstellar material. DESSART L. and JACOBSON-GALAN W.V.
2023ApJ...956L...5B 420           X C       8 11 ~ Early Spectroscopy and Dense Circumstellar Medium Interaction in SN 2023ixf. BOSTROEM K.A., PEARSON J., SHRESTHA M., et al.
2023ApJ...956L...8K 140           X         3 12 ~ Detecting High-energy Neutrino Minibursts from Local Supernovae with Multiple Neutrino Observatories. KHEIRANDISH A. and MURASE K.
2023ApJ...956...46S 47           X         1 15 ~ High-resolution Spectroscopy of SN 2023ixf's First Week: Engulfing the Asymmetric Circumstellar Material. SMITH N., PEARSON J., SAND D.J., et al.
2023PASJ...75L..27Y 233           X C       4 8 ~ Bright Type II supernova 2023ixf in M 101: A quick analysis of the early-stage spectra and near-infrared light curves. YAMANAKA M., FUJII M. and NAGAYAMA T.
2024ApJ...961...47I 100             C       1 7 ~ Diagnosis of Circumstellar Matter Structure in Interaction-powered Supernovae with Hydrogen Line Features. ISHII A.T., TAKEI Y., TSUNA D., et al.
2024ApJ...963..105M 250           X C       4 5 ~ Binary Interaction Can Yield a Diversity of Circumstellar Media around Type II Supernova Progenitors. MATSUOKA T. and SAWADA R.
2024A&A...683A.154M 50           X         1 4 ~ Circumstellar interaction models for the early bolometric light curve of SN 2023ixf. MARTINEZ L., BERSTEN M.C., FOLATELLI G., et al.

goto View the references in ADSLimited to 100