SWIFT J1112.2-8238 , the SIMBAD biblio

SWIFT J1112.2-8238 , the SIMBAD biblio (38 results) C.D.S. - SIMBAD4 rel 1.7 - 2020.08.12CEST17:56:33


Sort references on where and how often the object is cited
trying to find the most relevant references on this object.
More on score
Bibcode/DOI Score in Title|Abstract|
Keywords
in a table in teXt, Caption, ... Nb occurence Nb objects in ref Citations
(from ADS)
Title First 3 Authors
2020ApJ...892L...1L 50           X         1 11 ~ Optical polarimetry of the tidal disruption event AT2019DSG. LEE C.-H., HUNG T., MATHESON T., et al.
2020MNRAS.491.1771W 100           X         2 6 ~ Polarimetry of relativistic tidal disruption event Swift J2058+0516. WIERSEMA K., HIGGINS A.B., LEVAN A.J., et al.
2019A&A...630A..98S 93             C       1 24 ~ XMMSL2 J144605.0+685735: a slow tidal disruption event. SAXTON R.D., READ A.M., KOMOSSA S., et al.
2019ApJ...884L..34P 47           X         1 7 ~ CDF-S XT1 and XT2: white dwarf tidal disruption events by intermediate-mass black holes? PENG Z.-K., YANG Y.-S., SHEN R.-F., et al.
2019ApJ...886..114H 47           X         1 3 ~ Neutrino emissions from tidal disruption remnants. HAYASAKI K. and YAMAZAKI R.
2019MNRAS.483..565C 280           X         6 9 ~ GRRMHD simulations of tidal disruption event accretion discs around supermassive black holes: jet formation, spectra, and detectability. CURD B. and NARAYAN R.
2019MNRAS.486.3388D 47           X         1 8 ~ Evidence for a TDE origin of the radio transient Cygnus A-2. DE VRIES M.N., WISE M.W., NULSEN P.E.J., et al.
2019MNRAS.487.4965Z 47           X         1 3 ~ Tidal disruption event discs around supermassive black holes: disc warp and inclination evolution. ZANAZZI J.J. and LAI D.
2019MNRAS.488.1878N 93               F     1 40 ~ The tidal disruption event AT2017eqx: spectroscopic evolution from hydrogen rich to poor suggests an atmosphere and outflow. NICHOLL M., BLANCHARD P.K., BERGER E., et al.
2018A&A...617A.122K viz 45           X         1 56 11 The optical/NIR afterglow of GRB 111209A: Complex yet not unprecedented. KANN D.A., SCHADY P., OLIVARES E.F., et al.
2018ApJ...865..128L 45           X         1 19 1 On the missing energy puzzle of tidal disruption events. LU W. and KUMAR P.
2018MNRAS.475.4011B 45           X         1 11 3 Long-term radio and X-ray evolution of the tidal disruption event ASASSN-14li. BRIGHT J.S., FENDER R.P., MOTTA S.E., et al.
2018MNRAS.478.3016W 269           X         6 4 2 Super-Eddington accretion in tidal disruption events: the impact of realistic fallback rates on accretion rates. WU S., COUGHLIN E.R. and NIXON C.
2017A&A...598A..29S 45           X         1 13 17 XMMSL1 J074008.2-853927: a tidal disruption event with thermal and non-thermal components. SAXTON R.D., READ A.M., KOMOSSA S., et al.
2017A&A...603A..76G 44           X         1 8 6 Can we observe neutrino flares in coincidence with explosive transients? GUEPIN C. and KOTERA K.
2017ApJ...838....3S 50           X         1 3 18 High-energy neutrino flares from X-ray bright and dark tidal disruption events. SENNO N., MURASE K. and MESZAROS P.
2017ApJ...838..149A 1019       D     X C       23 99 40 New physical insights about tidal disruption events from a comprehensive observational inventory At X-ray wavelengths. AUCHETTL K., GUILLOCHON J. and RAMIREZ-RUIZ E.
2017ApJ...844...46B viz 46           X         1 12 30 IPTF16fnl: a faint and fast tidal disruption event in an E+A galaxy. BLAGORODNOVA N., GEZARI S., HUNG T., et al.
2017MNRAS.469..314K 44           X         1 4 3 TDE fallback cut-off due to a pre-existing accretion disc. KATHIRGAMARAJU A., BARNIOL DURAN R. and GIANNIOS D.
2017MNRAS.469.1354D 45           X         1 12 16 Can tidal disruption events produce the IceCube neutrinos? DAI L. and FANG K.
2017MNRAS.471.1141L 44           X         1 8 1 Radiative interaction between the relativistic jet and optically thick envelope in tidal disruption events. LU W., KROLIK J., CRUMLEY P., et al.
2017MNRAS.471.4286F 131           X         3 4 3 Jetted tidal disruptions of stars as a flag of intermediate mass black holes at high redshifts. FIALKOV A. and LOEB A.
2017MNRAS.472.4469B 1523 T   A D     X C F     33 13 3 Late-time observations of the relativistic tidal disruption flare candidate
Swift J1112.2-8238.
BROWN G.C., LEVAN A.J., STANWAY E.R., et al.
2016ApJ...816...20L 44           X         1 7 10 IGR J12580+0134: the first tidal disruption event with an off-beam relativistic jet. LEI W.-H., YUAN Q., ZHANG B., et al.
2016ApJ...816L..10C 43           X         1 5 3 X-ray afterglow of Swift J1644+57: a Compton echo? CHENG K.S., CHERNYSHOV D.O., DOGIEL V.A., et al.
2016ApJ...818L..21F 46           X         1 15 53 Tidal disruption events prefer unusual host galaxies. FRENCH K.D., ARCAVI I. and ZABLUDOFF A.
2016ApJ...819....3M 88           X         2 9 32 Optical thermonuclear transients from tidal compression of white dwarfs as tracers of the low end of the massive black hole mass function. MacLEOD M., GUILLOCHON J., RAMIREZ-RUIZ E., et al.
2016ApJ...819...51L 214           X         5 18 20 Late time multi-wavelength observations of Swift J1644+5734: a luminous Optical/IR bump and quiescent X-ray emission. LEVAN A.J., TANVIR N.R., BROWN G.C., et al.
2016ApJ...825...47P 426     A D S   X         10 6 5 Search for high-energy gamma-ray emission from tidal disruption events with the Fermi large area telescope. PENG F.-K., TANG Q.-W. and WANG X.-Y.
2016ApJ...833..110I 44           X         1 13 22 Are ultra-long gamma-ray bursts caused by blue supergiant collapsars, newborn magnetars, or white dwarf tidal disruption events? IOKA K., HOTOKEZAKA K. and PIRAN T.
2016ApJ...833..200L 43           X         1 5 3 Modeling the gamma-ray emission in the Galactic Center with a fading cosmic-ray accelerator. LIU R.-Y., WANG X.-Y., PROSEKIN A., et al.
2016MNRAS.455.3612C 46           X         1 5 19 Post-periapsis pancakes: sustenance for self-gravity in tidal disruption events. COUGHLIN E.R., NIXON C., BEGELMAN M.C., et al.
2016MNRAS.461.3375Y 128           X   F     2 6 5 Catching jetted tidal disruption events early in millimetre. YUAN Q., WANG Q.D., LEI W., et al.
2016PASJ...68...58K 60       D     X C       1 24 5 Hard X-ray luminosity function of tidal disruption events: First results from the MAXI extragalactic survey. KAWAMURO T., UEDA Y., SHIDATSU M., et al.
2015MNRAS.452.4297B 1826 T   A     X C       42 11 53
Swift J1112.2-8238: a candidate relativistic tidal disruption flare.
BROWN G.C., LEVAN A.J., STANWAY E.R., et al.
2013ApJS..209...14K viz 463       D S   X C       10 255 208 The Swift/BAT hard X-ray transient monitor. KRIMM H.A., HOLLAND S.T., CORBET R.H.D., et al.
2011ATel.3463....1K 238 T         X         5 4 3 Swift reports the detection of a new transient source
Swift J1112.2-8238.
KRIMM H.A., KENNEA J.A., HOLLAND S.T., et al.
2011ATel.3469....1B 120 T         X         2 1 2 Gemini Optical Observations of
Swift J1112.2-8238.
BERGER E. and CHORNOCK R.

goto View the references in ADS


2020.08.12-17:56:33

© Université de Strasbourg/CNRS

    • Contact