SIMBAD references

1996A&A...315..179S - Astronomy and Astrophysics, volume 315, 179-193 (1996/11-1)

Abundances in the symbiotic star AG Draconis: the barium-symbiotic connection.

SMITH V.V., CUNHA K., JORISSEN A. and BOFFIN H.M.J.

Abstract (from CDS):

An abundance analysis of the yellow symbiotic system AG Draconis reveals it to be a metal-poor K-giant ([Fe/H]=-1.3) which is enriched in the heavy s-process elements. This star thus provides a link between the symbiotic stars and the binary barium and CH stars which are also s-process enriched. These binary systems, which exhibit overabundances of the heavy elements, owe their abundance peculiarities to mass transfer from thermally-pulsing asymptotic giant branch stars, which have since evolved to become white-dwarf companions of the cool stars we now view as the chemically peculiar primaries. A comparison of the heavy-element abundance distribution in AG Dra with theoretical nucleosynthesis calculations shows that the s-process is defined by a relatively large neutron exposure (τ=1.3mb–1), while an analysis of the rubidium abundance suggests that the s-process occurred at a neutron density of about 2x108cm–3. The derived spectroscopic orbit of AG Dra is similar to the orbits of barium and CH stars. Because the luminosity function of low-metallicity K giants is skewed towards higher luminosities by about 2 magnitudes relative to solar-metallicity giants, it is argued that the lower metallicity K giants have larger mass-loss rates. It is this larger mass-loss rate that drives the symbiotic phenomena in AG Dra and we suggest that the other yellow symbiotic stars are probably low-metallicity objects as well.

Abstract Copyright:

Journal keyword(s): binaries: symbiotic - stars: individual: AG Dra - stars: abundances - stars: peculiar

Simbad objects: 15

goto View the reference in ADS

To bookmark this query, right click on this link: simbad:1996A&A...315..179S and select 'bookmark this link' or equivalent in the popup menu


2020.10.26-00:16:59

© Université de Strasbourg/CNRS

    • Contact