2002MNRAS.332..283R


C.D.S. - SIMBAD4 rel 1.7 - 2019.10.14CEST23:51:41

2002MNRAS.332..283R - Mon. Not. R. Astron. Soc., 332, 283-295 (2002/May-2)

An empirical calibration of star formation rate estimators.

ROSA-GONZALEZ D., TERLEVICH E. and TERLEVICH R.

Abstract (from CDS):

The observational determination of the behaviour of the star formation rate (SFR) with look-back time or redshift has two main weaknesses: (i) the large uncertainty of the dust/extinction corrections, and (ii) that systematic errors may be introduced by the fact that the SFR is estimated using different methods at different redshifts. Most frequently, the luminosity of the Hα emission line, that of the forbidden line [Oii] λ 3727 and that of the far-ultraviolet continuum are used with low-, intermediate- and high-redshift galaxies, respectively.

To assess the possible systematic differences among the different SFR estimators and the role of dust, we have compared SFR estimates using Hα, [Oii] λ 3727Å, ultraviolet (UV) and far-infrared (FIR) luminosities [SFR (Hα), SFR (Oii), SFR (UV) and SFR (FIR), respectively] of a sample comprising the 31 nearby star-forming galaxies that have high-quality photometric data in the UV, optical and FIR.

We review the different `standard' methods for the estimation of the SFR and find that while the standard method provides good agreement between SFR (Hα) and SFR (FIR), both SFR (Oii) and SFR (UV) are systematically higher than SFR (FIR), irrespective of the extinction law.

We show that the excess in the SFR (Oii) and SFR (UV) is mainly due to an overestimation of the extinction resulting from the effect of underlying stellar Balmer absorptions in the measured emission line fluxes. Taking this effect into consideration in the determination of the extinction brings the SFR (Oii) and SFR (UV) in line with the SFR (FIR), and simultaneously reduces the internal scatter of the SFR estimations.

Based on these results, we have derived `unbiased' SFR expressions for the SFR (UV), SFR (Oii) and SFR (Hα). We have used these estimators to recompute the SFR history of the Universe using the results of published surveys. The main results are that the use of the unbiased SFR estimators brings into agreement the results of all surveys. Particularly important is the agreement achieved for the SFR derived from the FIR/millimetre and optical/UV surveys. The `unbiased' star formation history of the Universe shows a steep rise in the SFR from z =0 to z =1 with SFR ∝(1+z)4.5, followed by a decline for z >2 where SFR ∝(1+z)–1.5. Galaxy formation models tend to have a much flatter slope from z =0 to z =1.


Abstract Copyright: 2002 Blackwell Science Ltd

Journal keyword(s): stars: formation - Hii regions - galaxies: evolution

Simbad objects: 34

goto Full paper

goto View the reference in ADS

Number of rows : 34

N Identifier Otype ICRS (J2000)
RA
ICRS (J2000)
DEC
Mag U Mag B Mag V Mag R Mag I Sp type #ref
1850 - 2019
#notes
1 IC 1586 bCG 00 47 56.301 +22 22 22.51   15.0       ~ 68 0
2 Mrk 960 bCG 00 48 35.430 -12 42 59.77   15.5       ~ 100 0
3 IC 214 G 02 14 05.586 +05 10 23.37   14.4       ~ 133 0
4 NGC 1140 EmG 02 54 33.5258827369 -10 01 43.135585379 12.41 12.84 12.49 13.6 13.5 ~ 253 1
5 NGC 1313 G 03 18 16.046 -66 29 53.74   10.06 10.0 9.40 10.4 ~ 584 2
6 NGC 1510 GiP 04 03 32.640 -43 24 00.58 14.23 13.63 13.24 13.09   ~ 168 1
7 NGC 1614 AGN 04 34 00.027 -08 34 44.57   14.66 13.99     ~ 591 0
8 NGC 1705 SBG 04 54 13.500 -53 21 39.82 12.32 12.96 12.56 12.58 12.9 ~ 578 1
9 NGC 1800 G 05 06 25.737 -31 57 15.21 13.51 13.19 12.70 12.48 12.9 ~ 152 1
10 NAME LMC G 05 23 34.6 -69 45 22     0.4     ~ 14317 1
11 LEDA 3090963 H2G 08 42 20.941 +11 50 00.39           ~ 35 0
12 NGC 3049 EmG 09 54 49.651 +09 16 17.90   13.04       ~ 280 1
13 ESO 572-34 EmG 11 58 58.114 -19 01 47.67   14.19 17.8 13.41 14.4 ~ 72 0
14 NGC 4194 AGN 12 14 09.615 +54 31 35.93   13.79 13.30     ~ 400 2
15 NGC 4385 AGN 12 25 42.8108150606 +00 34 21.279221919   14.63 14.12 13.1 12.8 ~ 240 0
16 EC 12476-2317 AGN 12 50 18.90 -23 33 57.6   16.29 15.46     ~ 54 0
17 Mrk 66 Sy2 13 25 53.813 +57 15 16.08   15.0       ~ 73 0
18 M 83 SBG 13 37 00.919 -29 51 56.74 8.85 8.11 7.52 7.21   ~ 2156 2
19 NGC 5253 AGN 13 39 55.990 -31 38 24.11 11.48 10.94 10.49 10.33   ~ 1244 4
20 Mrk 829 GiP 14 50 56.495 +35 34 18.27   14.5 14.83     ~ 192 0
21 NGC 5860 EmG 15 06 33.73 +42 38 29.2   14.2       ~ 82 0
22 Mrk 487 bCG 15 37 04.237 +55 15 47.60   15.2       ~ 124 0
23 UVQS J154543.56+085801.2 AGN 15 45 43.553 +08 58 01.35     16.0     ~ 40 0
24 NGC 6052 IG 16 05 12.8707837896 +20 32 32.613940524 13.01 13.44 13.00     ~ 328 2
25 NGC 6090 PaG 16 11 40.3 +52 27 21   14.0       ~ 390 2
26 NGC 6217 AGN 16 32 39.2277115994 +78 11 53.468793359   14.37 13.88     ~ 273 0
27 Mrk 309 AGN 22 52 34.7114349528 +24 43 49.427431876   15.69 15.22     ~ 96 0
28 NGC 7552 GiP 23 16 10.767 -42 35 05.39 11.34 11.22 10.57 10.08 11.1 ~ 488 3
29 NGC 7673 EmG 23 27 41.060 +23 35 20.18 12.84 13.17 12.76     ~ 260 1
30 NGC 7714 GiP 23 36 14.099 +02 09 18.07   14.91 14.36     ~ 717 1
31 APG 284 PaG 23 36 19 +02 09.3   12.6       ~ 601 0
32 Mrk 542 H2G 23 56 59.619 -02 05 01.98   15.4       ~ 43 0
33 NGC 7793 GiG 23 57 49.7533807411 -32 35 27.708304655 10.26 9.74 9.28 9.06 9.7 ~ 888 2
34 NAME Local Group GrG ~ ~           ~ 6652 0

    Equat.    Gal    SGal    Ecl

To bookmark this query, right click on this link: simbad:objects in 2002MNRAS.332..283R and select 'bookmark this link' or equivalent in the popup menu


2019.10.14-23:51:41

© Université de Strasbourg/CNRS

    • Contact