SIMBAD references

2003ApJ...596..496D - Astrophys. J., 596, 496-500 (2003/October-2)

The impact of pollution on stellar evolution models.

DOTTER A. and CHABOYER B.

Abstract (from CDS):

An approach is introduced for incorporating the concept of stellar pollution into stellar evolution models. The approach involves enhancing the metal content of the surface layers of stellar models. In addition, the surface layers of stars in the mass range of 0.5-2.0 Mare mixed to an artificial depth motivated by observations of lithium abundance. The behavior of polluted stellar evolution models is explored assuming the pollution occurs after the star has left the fully convective pre-main-sequence phase. Stellar models polluted with a few Earth masses (M) of iron are significantly hotter than stars of the same mass with an equivalent bulk metallicity. Polluted stellar evolution models can successfully reproduce the metal-rich, parent star τ Bootis and suggest a slightly lower mass than standard evolution models. Finally, the possibility that stars in the Hyades open cluster have accreted an average of 0.5 Mof iron is explored. The results indicate that it is not possible to rule out stellar pollution on this scale from the scatter of Hyades stars on a color-magnitude diagram. The small amount of scatter in the observational data set does rule out pollution on the order of ∼1.5 Mof iron. Pollution effects at the low level of 0.5 Mof iron do not produce substantial changes in a star's evolution.

Abstract Copyright:

Journal keyword(s): Accretion, Accretion Disks - Galaxy: Open Clusters and Associations: Individual: Name: Hyades - Stars: Planetary Systems: Protoplanetary Disks - Stars: Abundances - Stars: Evolution - Stars: Individual: Constellation Name: τ Bootis

Simbad objects: 3

goto Full paper

goto View the reference in ADS

To bookmark this query, right click on this link: simbad:2003ApJ...596..496D and select 'bookmark this link' or equivalent in the popup menu


2019.09.22-13:11:17

© Université de Strasbourg/CNRS

    • Contact