SIMBAD references

2003MNRAS.345..292H - Mon. Not. R. Astron. Soc., 345, 292-310 (2003/October-2)

The remarkable rapid X-ray, ultraviolet, optical and infrared variability in the black hole XTE J1118+480.

HYNES R.I., HASWELL C.A., CUI W., SHRADER C.R., O'BRIEN K., CHATY S., SKILLMAN D.R., PATTERSON J. and HORNE K.

Abstract (from CDS):

The transient black-hole binary XTE J1118+480 exhibited dramatic rapid variability at all wavelengths which were suitably observed during its 2000 April-July outburst. We examine time-resolved X-ray, ultraviolet, optical and infrared data spanning the plateau phase of the outburst. We find that both X-ray and infrared bands show large amplitude variability. The ultraviolet and optical variability is more subdued, but clearly correlated with that seen in the X-rays. The ultraviolet, at least, appears to be dominated by the continuum, although the lines are also variable. Using the X-ray variations as a reference point, we find that the ultraviolet (UV) variability at long wavelengths occurs later than that at short wavelengths. Uncertainty in the Hubble Space Telescope timing prohibits a determination of the absolute lag with respect to the X-rays, however. The transfer function is clearly not a delta-function, exhibiting significant repeatable structure. For the main signal we can rule out an origin in reprocessing on the companion star - the lack of variation in the lags is not consistent with this, given a relatively high orbital inclination. Weak reprocessing from the disc and/or companion star may be present, but is not required, and another component must dominate the variability. This could be variable synchrotron emission correlated with X-ray variability, consistent with our earlier interpretation of the infrared (IR) flux as due to synchrotron emission rather than thermal disc emission. In fact, the broad-band energy distribution of the variability from IR to X-rays is consistent with expectations of optically thin synchrotron emission. We also follow the evolution of the low-frequency quasi-periodic oscillation in X-rays, UV, and optical. Its properties at all wavelengths are similar, indicating a common origin.

Abstract Copyright: 2003 RAS

Journal keyword(s): accretion, accretion discs - binaries: close - stars: individual: XTE J1118+480 - ultraviolet: stars - X-rays: stars

Simbad objects: 5

goto Full paper

goto View the references in ADS

To bookmark this query, right click on this link: simbad:2003MNRAS.345..292H and select 'bookmark this link' or equivalent in the popup menu