SIMBAD references

2003PASP..115..825D - Publ. Astron. Soc. Pac., 115, 825-836 (2003/July-0)

Dynamical stability of earth-like planetary orbits in binary systems.

DAVID E.-M., QUINTANA E.V., FATUZZO M. and ADAMS F.C.

Abstract (from CDS):

This paper explores the stability of an Earth-like planet orbiting a solar-mass star in the presence of an outer-lying intermediate-mass companion. The overall goal is to estimate the fraction of binary systems that allow Earth-like planets to remain stable over long timescales. We numerically determine the planet's ejection time τejover a range of companion masses (MC=0.001-0.5 M), orbital eccentricities ε, and semimajor axes a. This suite of ∼40,000 numerical experiments suggests that the most important variables are the companion's mass MCand periastron distance Rmin=a(1-ε) to the primary star. At fixed MC, the ejection time is a steeply increasing function of Rminover the range of parameter space considered here (although the ejection time has a distribution of values for a given Rmin). Most of the integration times are limited to 10 Myr, but a small set of integrations extend to 500 Myr. For each companion mass, we find fitting formulae that approximate the mean ejection time as a function of Rmin. These functions can then be extrapolated to longer timescales. By combining the numerically determined ejection times with the observed distributions of orbital parameters for binary systems, we estimate that (at least) 50% of binaries allow an Earth-like planet to remain stable over the 4.6 Gyr age of our solar system.

Abstract Copyright:

Journal keyword(s): astrobiology - Stars: Binaries: General - Celestial Mechanics - Solar System: General

Simbad objects: 18

goto Full paper

goto View the reference in ADS

To bookmark this query, right click on this link: simbad:2003PASP..115..825D and select 'bookmark this link' or equivalent in the popup menu


2021.01.16-08:07:10

© Université de Strasbourg/CNRS

    • Contact