SIMBAD references

2004A&A...426..279P - Astronomy and Astrophysics, volume 426, 279-296 (2004/10-4)

Unveiling Mira stars behind the molecules. Confirmation of the molecular layer model with narrow band near-infrared interferometry.

PERRIN G., RIDGWAY S.T., MENNESSON B., COTTON W.D., WOILLEZ J., VERHOELST T., SCHULLER P., COUDE DU FORESTO V., TRAUB W.A., MILLAN-GABET R. and LACASSE M.G.

Abstract (from CDS):

We have observed Mira stars with the FLUOR beamcombiner on the IOTA interferometer in narrow bands around 2.2µm wavelength. We find systematically larger diameters in bands contaminated by water vapor and CO. The visibility measurements can be interpreted with a model comprising a photosphere surrounded by a thin spherical molecular layer. The high quality of the fits we obtain demonstrates that this simple model accounts for most of the star's spatial structure. For each star and each period we were able to derive the radius and temperature of the star and of the molecular layer as well as the optical depth of the layer in absorption and continuum bands. The typical radius of the molecular layer is 2.2R* with a temperature ranging between 1500 and 2100K. The photospheric temperatures we find are in agreement with spectral types of Mira stars. Our photospheric diameters are found smaller than in previous studies by several tens of percent. We believe previous diameters were biased by the use of unsuited geometrical models to explain visibilities. The conclusions of this work are various. First, we offer a consistent view of Mira stars over a wide range of wavelengths. Second, the parameters of the molecular layer we find are consistent with spectroscopic studies. Third, from our diameter measurements we deduce that all Mira stars are fundamental mode pulsators and that previous studies leading to the conclusion of the first-overtone mode were biased by too large diameter estimates.

Abstract Copyright:

Journal keyword(s): techniques: interferometric - stars: AGB and post-AGB - stars: fundamental parameters - stars: mass-loss - infrared: stars

Simbad objects: 22

goto Full paper

goto View the reference in ADS

To bookmark this query, right click on this link: simbad:2004A&A...426..279P and select 'bookmark this link' or equivalent in the popup menu


2019.12.08-09:52:31

© Université de Strasbourg/CNRS

    • Contact