SIMBAD references

2004ApJ...611L..29H - Astrophys. J., 611, L29-L32 (2004/August-2)

The galactic 26Al problem and the close binary type Ib/c supernova solution.

HIGDON J.C., LINGENFELTER R.E. and ROTHSCHILD R.E.

Abstract (from CDS):

The origin of the long-lived (1.07 Myr mean life) radioactive 26Al, which has been observed in the Galactic interstellar medium from its 1.809 MeV decay gamma-ray line emission, has been a persistent problem for over 20 years. Wolf-Rayet (W-R) winds were thought to be the most promising source, but their calculated 26Al yields are not consistent with recent analyses of the 1.809 MeV emission from the nearest W-R star and nearby OB associations. The expected 26Al yield from the W-R star exceeds, by as much as a factor of 3, that set by the 2 σ upper limit on the 1.809 MeV emission, while the W-R yields in the OB associations are only about (1)/(3) of that required by the 1.809 MeV emission. We suggest that a solution to these problems may lie in 26Al from a previously ignored source: explosive nucleosynthesis in the core-collapse Type Ib/c supernovae (SNe Ib/c) of W-R stars that have lost most of their mass to close binary companions. Recent nucleosynthetic calculations of SNe Ib/c suggest that their 26Al yields depend very strongly on the final pre-SN mass of the W-R star and that those with final masses around 6-8 Mare expected to produce as much as 10–2 Mof 26Al per SN. Such binary SNe Ib/c make up only a small fraction of the current SNe Ib/c and only about 1% of all Galactic core-collapse SNe. But they appear to be such prolific sources that the bulk of the present 26Al in the Galaxy may come from just a few hundred close binary SNe Ib/c, and the intense 1.809 MeV emission from nearby OB associations may come from just one or two such SNe. More extensive SN Ib/c calculations of the 26Al yields versus pre-SN mass are clearly needed to test this possibility.

Abstract Copyright:

Journal keyword(s): Galaxy: Abundances - Nuclear Reactions, Nucleosynthesis, Abundances - Stars: Wolf-Rayet - Stars: Supernovae: General

Simbad objects: 11

goto Full paper

goto View the reference in ADS

To bookmark this query, right click on this link: simbad:2004ApJ...611L..29H and select 'bookmark this link' or equivalent in the popup menu


2020.09.26-12:55:10

© Université de Strasbourg/CNRS

    • Contact