SIMBAD references

2004MNRAS.352.1390M - Mon. Not. R. Astron. Soc., 352, 1390-1404 (2004/August-3)

The cosmological evolution of quasar black hole masses.

McLURE R.J. and DUNLOP J.S.

Abstract (from CDS):

Virial black hole mass estimates are presented for 12698 quasars in the redshift interval 0.1 ≤z≤ 2.1, based on modelling of spectra from the Sloan Digital Sky Survey (SDSS) first data release. The black hole masses of the SDSS quasars are found to lie between ≃107 Mand an upper limit of ≃3x109 M, entirely consistent with the largest black hole masses found to date in the local Universe. The estimated Eddington ratios of the broad-line quasars (full width at half-maximum ≥ 2000 km/s) show a clear upper boundary at Lbol/LEdd≃ 1, suggesting that the Eddington luminosity is still a relevant physical limit to the accretion rate of luminous broad-line quasars at z≤ 2. By combining the black hole mass distribution of the SDSS quasars with the two degree field (2dF) quasar luminosity function, the number density of active black holes at z≃ 2 is estimated as a function of mass. In addition, we independently estimate the local black hole mass function for early-type galaxies using the Mbh-σ and Mbh-Lbulgecorrelations. Based on the SDSS velocity dispersion function and the Two Micron All Sky Survey (2MASS) K-band luminosity function, both estimates are found to be consistent at the high-mass end (Mbh≥ 108 M). By comparing the estimated number density of active black holes at z≃ 2 with the local mass density of dormant black holes, we set lower limits on the quasar lifetimes and find that the majority of black holes with mass ≥108.5 Mare in place by ≃2.

Abstract Copyright: 2004 RAS

Journal keyword(s): black hole physics - galaxies: active - galaxies: nuclei - quasars: general

Simbad objects: 1

goto Full paper

goto View the reference in ADS

To bookmark this query, right click on this link: simbad:2004MNRAS.352.1390M and select 'bookmark this link' or equivalent in the popup menu


2019.12.06-14:04:38

© Université de Strasbourg/CNRS

    • Contact