SIMBAD references

2005ApJ...624..436J - Astrophys. J., 624, 436-447 (2005/May-1)

Investigating the mechanism for the formation of nitrous oxide [N2O(X 1Σ+)] in extraterrestrial ices.

JAMIESON C.S., BENNETT C.J., MEBEL A.M. and KAISER R.I.

Abstract (from CDS):

The formation of nitrous oxide, N2O(X 1Σ+), in interstellar space and in ices on Pluto and Triton has been experimentally investigated. A molecular nitrogen (N2) and carbon dioxide (CO2) ice mixture was irradiated at 10 K with 5 keV electrons to simulate the electronic interaction effects of Galactic cosmic-ray bombardment of extraterrestrial ice samples over a time of 5x106 yr. By monitoring the experiment with a Fourier transform infrared spectrometer on line and in situ, the temporal evolution of the 2235/cm absorption band of nitrous oxide was found to follow pseudo-first-order kinetics. This indicates that the mechanism of formation is most likely a reaction between ground-state molecular nitrogen, N2(X 1Σ+g), and an oxygen atom, either in the ground state (3P) or in the first electronically excited state (1D), within the matrix cage through an addition of the oxygen atom to a nonbonding electron pair on the nitrogen molecule. The observation of nitrous oxide together with the kinetics and dynamics studies investigated in this paper underline the role of nonequilibrium processes in low-temperature ice matrices, aid in the understanding of chemical reaction pathways that exist in extraterrestrial ices, and assist a prospective identification of nitrous oxide on the surfaces of Pluto and Triton.

Abstract Copyright:

Journal keyword(s): Astrochemistry - Infrared: ISM - Infrared: Solar System - ISM: Abundances - ISM: Molecules - Molecular Processes

Simbad objects: 4

goto Full paper

goto View the reference in ADS

To bookmark this query, right click on this link: simbad:2005ApJ...624..436J and select 'bookmark this link' or equivalent in the popup menu


2020.01.24-23:34:49

© Université de Strasbourg/CNRS

    • Contact