SIMBAD references

2005ApJ...634..955V - Astrophys. J., 634, 955-963 (2005/December-1)

An observationally motivated framework for AGN heating of cluster cores.

VOIT G.M. and DONAHUE M.

Abstract (from CDS):

The cooling flow problem is a long-standing puzzle that has received considerable recent attention, in part because the mechanism that quenches cooling flows in galaxy clusters is likely to be the same mechanism that sharply truncates the high end of the galaxy luminosity function. Most of the recent models for halting cooling in clusters have focused on AGN heating, but the actual heating mechanism has remained mysterious. Here we present a framework for AGN heating derived from a Chandra survey of gas entropy profiles within cluster cores. This set of observations strongly suggests that the inner parts of cluster cores are shock-heated every ∼108 yr by intermittent AGN outbursts, driven by a kinetic power output of ∼1045 ergs/s and lasting at least 107 yr. Beyond ∼30 kpc these shocks decay to sound waves, releasing buoyant bubbles that heat the core's outer parts. Between heating episodes, cooling causes the core to relax toward an asymptotic pure cooling profile. The density distribution in this asymptotic profile is sufficiently peaked that the AGN shock does not cause a core entropy inversion, allowing the cluster core to retain a strong iron abundance gradient, as observed.

Abstract Copyright:

Journal keyword(s): Galaxies: Clusters: General - Galaxies: Evolution - Galaxies: Intergalactic Medium - X-Rays: Galaxies: Clusters

Status at CDS:  

CDS comments: Parag. 1 (end) : MS 0435+7241 is a misprint for 0735+7421 !!

Simbad objects: 10

goto Full paper

goto View the reference in ADS

To bookmark this query, right click on this link: simbad:2005ApJ...634..955V and select 'bookmark this link' or equivalent in the popup menu


2020.04.06-14:36:05

© Université de Strasbourg/CNRS

    • Contact