SIMBAD references

2006A&A...456..117A - Astronomy and Astrophysics, volume 456, 117-129 (2006/9-2)

Testing the inverse-Compton catastrophe scenario in the intra-day variable blazar S5 0716+71. II. A search for intra-day variability at millimetre wavelengths with the IRAM 30m telescope.

AGUDO I., KRICHBAUM T.P., UNGERECHTS H., KRAUS A., WITZEL A., ANGELAKIS E., FUHRMANN L., BACH U., BRITZEN S., ZENSUS J.A., WAGNER S.J., OSTORERO L., FERRERO E., GRACIA J. and GREWING M.

Abstract (from CDS):

We report on a densely time sampled polarimetric flux density monitoring of the BL Lac object S5 0716+71 at 86GHz and 229GHz. The source was observed with the IRAM 30m telescope at Pico Veleta within a coordinated multi-frequency observing campaign, which was centred around a 500ks INTEGRAL observation during November 10 to 16, 2003. The aim of this campaign was to search for signatures of inverse-Compton catastrophes through the observation of the broad-band variability of the source. At 86GHz, S5 0716+71 showed no intra-day variability, but showed remarkable inter-day variability with a flux density increase of 34% during the first four observing days, which cannot be explained by source extrinsic causes. At this frequency, making use of a new calibration strategy, we reach a relative rms accuracy of the flux density measurements of 1.2%. Although the flux density variability at 229GHz was consistent with that at 86GHz, the larger measurement errors at 229GHz do not allow us to detect, with high confidence, inter-day variations at this frequency. At 86GHz, the linear polarization fraction of S5 0716+71 was unusually large (15.0±1.8)%. Inter-day variability in linear polarization at 86GHz, with significance level >95%; σP/<P≥15% and σχ=6°, was observed during the first four observing days. From the total flux density variations at the synchrotron turnover frequency (∼86GHz) we compute an apparent brightness temperature TBapp>1.4x1014K at a redshift of 0.3, which exceeds by two orders of magnitude the inverse-Compton limit. A relativistic correction for TBapp with a Doppler factor δ>7.8 brings the observed brightness temperature down to the inverse Compton limit. A more accurate lower limit of δ>14.0, consistent with previous estimates from VLBI observations, is obtained from the comparison of the 86GHz synchrotron flux density and the upper limits for the synchrotron self-Compton flux density obtained from the INTEGRAL observations. The relativistic beaming of the emission by this high Doppler factor explains the non-detection of ``catastrophic'' inverse-Compton avalanches by INTEGRAL.

Abstract Copyright:

Journal keyword(s): galaxies: active - galaxies: BL Lacertae objects: general - galaxies: BL Lacertae objects: individual: S5 0716+71 - radio continuum: galaxies - radiation mechanisms: non-thermal - polarization

Simbad objects: 10

goto Full paper

goto View the reference in ADS

To bookmark this query, right click on this link: simbad:2006A&A...456..117A and select 'bookmark this link' or equivalent in the popup menu


2019.12.10-00:45:56

© Université de Strasbourg/CNRS

    • Contact