SIMBAD references

2006A&A...460..199Y - Astronomy and Astrophysics, volume 460, 199-208 (2006/12-2)

Single star progenitors of long gamma-ray bursts. I. Model grids and redshift dependent GRB rate.

YOON S.-C., LANGER N. and NORMAN C.

Abstract (from CDS):

We present grids of massive star evolution models at four different metallicities (Z=0.004, 0.002, 0.001, 0.00001). The effects of rotation on the stellar structure and the transport of angular momentum and chemical elements through the Spruit-Tayler dynamo and rotationally induced instabilities are considered. After discussing uncertainties involved with the adopted physics, we elaborate the final fate of massive stars as a function of initial mass and spin rate, at each considered metallicity. In particular, we investigate for which initial conditions long gamma-ray bursts (GRBs) are expected to be produced in the frame of the collapsar model. Then, using an empirical spin distribution of young massive metal-poor stars and a specified metallicity-dependent history of star-formation, we compute the expected GRB rate as function of metallicity and redshift based on our stellar evolution models. The GRB production in our models is limited to metallicities of Z≲0.004, with the consequence that about 50% of all GRBs are predicted to be found at redshifts above z=4, with most supernovae occurring at redshifts below z≃2.2. The average GRB/SN ratio predicted by our model is about 1/200 globally, and 1/1250 at low redshift. Future strategies for testing the considered GRB progenitor scenario are briefly discussed.

Abstract Copyright:

Journal keyword(s): stars: evolution - stars: rotation - supernovae: general - gamma rays: bursts

Simbad objects: 4

goto Full paper

goto View the reference in ADS

To bookmark this query, right click on this link: simbad:2006A&A...460..199Y and select 'bookmark this link' or equivalent in the popup menu


2020.01.20-10:11:38

© Université de Strasbourg/CNRS

    • Contact