SIMBAD references

2007ApJ...661.1208L - Astrophys. J., 661, 1208-1217 (2007/June-1)

Improving the speckle noise attenuation of simultaneous spectral differential imaging with a focal plane holographic diffuser.

LAFRENIERE D., DOYON R., NADEAU D., ARTIGAU E., MAROIS C. and BEAULIEU M.

Abstract (from CDS):

Direct exoplanet detection is limited by speckle noise in the point-spread function (PSF) of the central star. This noise can be reduced by subtracting PSF images obtained simultaneously in adjacent narrow spectral bands using a multichannel camera (MCC), but only to a limit imposed by differential optical aberrations in the MCC. To alleviate this problem, we suggest the introduction of a holographic diffuser at the focal plane of the MCC to convert the PSF image into an incoherent illumination scene that is then re-imaged with the MCC. The re-imaging is equivalent to a convolution of the scene with the PSF of each spectral channel of the camera. Optical aberrations in the MCC affect only the convolution kernel of each channel and not the PSF globally, resulting in better-correlated images. We report laboratory measurements with a dual-channel prototype (1.575 and 1.625 µm) to validate this approach. A speckle noise suppression factor of 12-14 was achieved, an improvement by a factor ∼5 over that obtained without the holographic diffuser. Simulations of exoplanet populations for three representative target samples show that the increase in speckle noise attenuation achieved in the laboratory would roughly double the number of planets that could be detected with current adaptive optics systems on 8 m telescopes.

Abstract Copyright:

Journal keyword(s): Instrumentation: Adaptive Optics - Stars: Planetary Systems - Stars: Imaging - Techniques: High Anular Resolution - Techniques: Image Processing

Simbad objects: 3

goto Full paper

goto View the reference in ADS

To bookmark this query, right click on this link: simbad:2007ApJ...661.1208L and select 'bookmark this link' or equivalent in the popup menu


2020.02.21-05:31:48

© Université de Strasbourg/CNRS

    • Contact