2007MNRAS.382..356K


Query : 2007MNRAS.382..356K

2007MNRAS.382..356K - Mon. Not. R. Astron. Soc., 382, 356-366 (2007/November-3)

Determination of the axial rotation rate using apsidal motion for early-type eclipsing binaries.

KHALIULLIN K.F. and KHALIULLINA A.I.

Abstract (from CDS):

Because the modern theory of stellar structure and evolution has a sound observational basis, we can consider that the apsidal parameters k2 computed in terms of this theory correctly reflect the radial density distribution in stars of different masses and spectral types. This allows us to address the problem of apsidal motion in close binary systems in a new way. Unlike the traditional approach, in this paper we use the observed apsidal periods Uobs to estimate the angular axial velocities of components, ωr, at fixed model values of k2. We use this approach to analyse the observational data for 28 eclipsing systems with known Uobs and early-type primaries (M ≥ 1.6 M or Te≥ 6000 K). We measure the age of the system in units of the synchronization time, t/tsyn.

Our analysis yielded the following results. (i) There is a clear correlation between ω_rsyn_ and t/tsyn: the younger a star, the higher the angular velocity of its axial rotation in units of ωsyn, the angular velocity at pseudo-synchronization. This correlation is more significant and obvious if the synchronization time, tsyn, is computed in terms of the Zahn theory. (ii) This observational fact implies that the synchronization of early-type components in close binary systems continues on the main sequence. The synchronization times for the inner layers of the components (i.e. those that are responsible for apsidal motion) are about 1.6 and 3.1 dex longer than those predicted by the theories of Zahn and Tassoul, respectively. The average initial angular velocities (for the zero-age main sequence) are equal to ω0syn~ 2.0. The dependence of the parameter E2 on stellar mass probably needs to be refined in the Zahn theory. (iii) Some components of the eclipsing systems of the sample studied show radially differential axial rotation. This is consistent with the Zahn theory, which predicts that the synchronization starts at the surface, where radiative damping of dynamical tides occurs, and develops toward the interior. Therefore, one would expect the inner parts of young double early-type stars to rotate faster than the outer parts.


Abstract Copyright: 2007 The Authors. Journal compilation © 2007 RAS

Journal keyword(s): binaries: eclipsing - stars: interiors - stars: rotation

Simbad objects: 36

goto Full paper

goto View the references in ADS

Number of rows : 36
N Identifier Otype ICRS (J2000)
RA
ICRS (J2000)
DEC
Mag U Mag B Mag V Mag R Mag I Sp type #ref
1850 - 2024
#notes
1 V* OX Cas EB* 01 09 00.0985736544 +61 28 14.847725676 9.71 10.18 9.9     B6+G0 97 0
2 V* IQ Per EB* 03 59 44.6764997640 +48 09 04.487282712   7.77 7.73     B9 155 0
3 HD 25833A EB* 04 06 55.8286148575 +33 26 46.929071509   6.83 6.87     ~ 260 0
4 HD 25833 ** 04 06 55.8351101323 +33 26 47.009585515       7.71   B3Vn 267 0
5 SV* HV 2274 EB* 05 02 40.7809489608 -68 24 21.495338172 13.298 13.984 14.127 14.192 14.390 ~ 77 0
6 V* AS Cam EB* 05 29 46.9108852512 +69 29 45.363748704   8.59 8.60     A0 161 1
7 V* RU Mon EB* 06 54 12.3144510432 -07 35 45.031651440   10.64 10.51     B9pv 106 1
8 V* AO Vel EB* 08 11 53.9160599592 -48 44 46.003619076   9.36 9.37     BpSi+B8V+B9/A0+B9/A0 65 0
9 HD 71487 SB* 08 26 17.7300667968 -39 03 32.258348136   6.43 6.49 7.44   B8V 71 0
10 * 163 Car EB* 09 54 33.8842758792 -58 25 16.579713612 5.6 6.47 6.64     B2V 121 0
11 V* GL Car EB* 11 14 39.8366304912 -60 39 36.364706856 9.09 10.02 9.74 9.86   B3:V 88 0
12 HD 99898 EB* 11 28 51.9505527360 -62 55 51.738942504 9.04 9.860 9.620 9.707   B2/5(III) 50 0
13 V* V346 Cen EB* 11 42 49.6742604288 -62 26 05.401617756 7.64 9.58 9.57 9.28 8.471 B1/3II/III 94 0
14 V* KT Cen EB* 11 48 05.3465466480 -62 21 10.912462416   12.00     11.363 B8 27 0
15 V* GG Lup EB* 15 18 56.3746551072 -40 47 17.596548564   5.495 5.604 5.613   B7V 134 0
16 V* V760 Sco EB* 16 24 43.7182304928 -34 53 37.529154204   7.16 7.05     B4V 168 0
17 V* U Oph EB* 17 16 31.7137908168 +01 12 37.998551304   5.941 5.921     B3V 380 1
18 V* V539 Ara EB* 17 50 28.3930000656 -53 36 44.664776352   5.60 5.71     B2/3Vnn 181 0
19 HD 163708 SB* 17 59 13.4703104784 -36 56 19.839700356   7.155 7.089 8.09   A3III 119 0
20 V* V451 Oph EB* 18 29 14.0426779320 +10 53 31.429623012   7.95 7.91     A0IV 165 0
21 V* YY Sgr EB* 18 44 35.8393954416 -19 23 23.033743368   10.25 10.17     B8/9II 73 1
22 V* HS Her EB* 18 50 49.7705985120 +24 43 11.940783384 8.180 8.580 8.560     B6III 121 1
23 V* V526 Sgr EB* 19 08 15.0263666280 -31 20 54.928664664   9.96 9.82     A0V 66 0
24 HD 331102 EB* 19 42 29.4562680000 +31 19 40.138490748   10.38 10.44     A2 80 0
25 V* V1765 Cyg EB* 19 48 50.5979466384 +33 26 14.222537016 5.99 6.578 6.463     B0.5II 144 0
26 V* V477 Cyg EB* 20 05 27.6886714176 +31 58 18.108420780   8.68 8.53     A1V 214 1
27 V* V453 Cyg EB* 20 06 34.9661707872 +35 44 26.269865844 7.83 8.52 8.40     B0.4IV+B0.7IV 206 0
28 V* DR Vul EB* 20 13 46.8508993704 +26 45 01.628896644   8.94 8.71     B8 87 1
29 V* V478 Cyg SB* 20 19 38.7476920032 +38 20 09.195280836   9.16 8.767     B0Vp 190 0
30 V* Y Cyg SB* 20 52 03.5771840640 +34 39 27.486121104 6.31 7.23 7.32     O9.5IV+O9.5IV 371 1
31 V* EK Cep SB* 21 41 21.5042268336 +69 41 34.112933916   7.95 7.89     A0V 213 0
32 V* CO Lac EB* 22 46 30.0011308824 +56 49 31.635247764   10.46 10.40     B9V 116 0
33 V* V364 Lac SB* 22 52 14.8100362992 +38 44 44.634368292   8.54 8.36     A4m+A3m 93 0
34 HD 218066 Be* 23 04 02.2270838832 +63 23 48.722060508 7.50 7.97 7.6     B1.5Vn 284 0
35 V* PV Cas EB* 23 10 02.5750345872 +59 12 06.149248560   9.98 9.86     B6V 155 0
36 V* AR Cas EB* 23 30 01.9406369832 +58 32 56.112185112 4.18 4.760 4.886     B3V 215 0

To bookmark this query, right click on this link: simbad:objects in 2007MNRAS.382..356K and select 'bookmark this link' or equivalent in the popup menu