SIMBAD references

2008A&A...480..551R - Astronomy and Astrophysics, volume 480, 551-561 (2008/3-3)

On the observability of resonant structures in planetesimal disks due to planetary migration.

RECHE R., BEUST H., AUGEREAU J.-C. and ABSIL O.

Abstract (from CDS):

The observed clumpy structures in debris disks are commonly interpreted as particles trapped in mean-motion resonances with an unseen exo-planet. Populating the resonances requires a migrating process of either the particles (spiraling inward due to drag forces) or the planet (moving outward). Because the drag time-scale in resolved debris disks is generally long compared to the collisional time-scale, the planet migration scenario might be more likely, but this model has so far only been investigated for planets on circular orbits. We present a thorough study of the impact of a migrating planet on a planetesimal disk, by exploring a broad range of masses and eccentricities for the planet. We discuss the sensitivity of the structures generated in debris disks to the basic planet parameters. We perform many N-body numerical simulations, using the symplectic integrator SWIFT, taking into account the gravitational influence of the star and the planet on massless test particles. A constant migration rate is assumed for the planet. The effect of planetary migration on the trapping of particles in mean motion resonances is found to be very sensitive to the initial eccentricity of the planet and of the planetesimals. A planetary eccentricity as low as 0.05 is enough to smear out all the resonant structures, except for the most massive planets. The planetesimals also initially have to be on orbits with a mean eccentricity of less than than 0.1 in order to keep the resonant clumps visible. This numerical work extends previous analytical studies and provides a collection of disk images that may help in interpreting the observations of structures in debris disks. Overall, it shows that stringent conditions must be fulfilled to obtain observable resonant structures in debris disks. Theoretical models of the origin of planetary migration will therefore have to explain how planetary systems remain in a suitable configuration to reproduce the observed structures.

Abstract Copyright:

Journal keyword(s): method: N-body simulations - celestial mechanics - stars: planetary systems - stars: individual: Vega

Simbad objects: 2

goto Full paper

goto View the reference in ADS

To bookmark this query, right click on this link: simbad:2008A&A...480..551R and select 'bookmark this link' or equivalent in the popup menu


2019.09.20-21:10:09

© Université de Strasbourg/CNRS

    • Contact