SIMBAD references

2008A&A...484..631V - Astronomy and Astrophysics, volume 484, 631-653 (2008/6-4)

Modelling the spectral energy distribution of ULIRGs. II. The energetic environment and the dense interstellar medium.

VEGA O., CLEMENS M.S., BRESSAN A., GRANATO G.L., SILVA L. and PANUZZO P.

Abstract (from CDS):

By using the spectral energy distribution (SED) from the near-infrared to the radio of a statistically significant number of luminous infrared galaxies we determine important physical parameters for this population of objects. In particular we constrain the optical depth towards the luminosity source, the star formation rate, the star formation efficiency and the AGN fraction. We fit the near-infrared to radio spectral energy distributions of a sample of 30 luminous and ultra-luminous infrared galaxies with pure starburst models or models that include both starburst and AGN components. We find that although about half of our sample have best-fit models that include an AGN component, only 30% (9/30) have an AGN that accounts for more than 10% of the infrared luminosity from 8 to 1000µm, whereas all have an energetically dominant starburst. Our derived AGN fractions are generally in good agreement with measurements of the mid-infrared line ratios, Ne[V]/Ne[II] and O[IV]/Ne[II] by Spitzer IRS, but much lower than those derived from PAH equivalent widths or the mid-infrared spectral slope. Our models determine the mass of dense molecular gas within which active star formation takes place via the extinction required to reproduce the infrared part of the SED. Assuming that this mass is that traced by the HCN molecule, we reproduce the observed linear relation between HCN flux and infrared luminosity found previously. We also find that the star formation efficiency, as defined by the current star formation rate per unit molecular gas mass, falls as the starburst ages. If the evolution of ULIRGs includes a phase in which an AGN contributes an important fraction to the infrared luminosity, this phase should last an order of magnitude less time than the starburst phase. However, we find no convincing evidence that an energetically important AGN is associated with a particular phase of the starburst. Because the mass of dense molecular gas that we derive is consistent with observations of the HCN molecule, it should be possible to estimate the mass of dense, star-forming molecular gas in such objects when molecular line data are not available.

Abstract Copyright:

Journal keyword(s): galaxies: active - infrared: galaxies - radio continuum: galaxies - ISM: dust, extinction

Status at CDS:  

CDS comments: Paragraph 5.1 IRAS 15250+3909 is a probable misprint for IRAS 15250+3609.

Simbad objects: 40

goto Full paper

goto View the reference in ADS

To bookmark this query, right click on this link: simbad:2008A&A...484..631V and select 'bookmark this link' or equivalent in the popup menu


2020.06.04-14:17:59

© Université de Strasbourg/CNRS

    • Contact