SIMBAD references

2008A&A...490..807N - Astronomy and Astrophysics, volume 490, 807-810 (2008/11-1)

Determining parameters of cool giant stars by modeling spectrophotometric and interferometric observations using the SAtlas program.

NEILSON H.R. and LESTER J.B.

Abstract (from CDS):

Optical interferometry is a powerful tool for observing the intensity structure and angular diameter of stars. When combined with spectroscopy and/or spectrophotometry, interferometry provides a powerful constraint for model stellar atmospheres. The purpose of this work is to test the robustness of the spherically symmetric version of the Atlas stellar atmosphere program, SAtlas, using interferometric and spectrophotometric observations. Cubes (three dimensional grids) of model stellar atmospheres, with dimensions of luminosity, mass, and radius, are computed to fit observations for three evolved giant stars, ψ Phoenicis, γ Sagittae, and α Ceti. The best-fit parameters are compared with previous results. The best-fit angular diameters and values of χ2 are consistent with predictions using Phoenix and plane-parallel Atlas models. The predicted effective temperatures, using SAtlas, are about 100 to 200K lower, and the predicted luminosities are also lower due to the differences in effective temperatures. It is shown that the SAtlas program is a robust tool for computing models of extended stellar atmospheres that are consistent with observations. The best-fit parameters are consistent with predictions using Phoenix models, and the fit to the interferometric data for ψ Phe differs slightly, although both agree within the uncertainty of the interferometric observations.

Abstract Copyright:

Journal keyword(s): stars: atmospheres - stars: fundamental parameters - stars: late-type

Simbad objects: 3

goto Full paper

goto View the reference in ADS

To bookmark this query, right click on this link: simbad:2008A&A...490..807N and select 'bookmark this link' or equivalent in the popup menu


2021.02.27-14:21:45

© Université de Strasbourg/CNRS

    • Contact