2009A&A...493..677L


Query : 2009A&A...493..677L

2009A&A...493..677L - Astronomy and Astrophysics, volume 493, 677-686 (2009/1-2)

Kozai resonance in extrasolar systems.

LIBERT A.-S. and TSIGANIS K.

Abstract (from CDS):

We study the possibility that extrasolar two-planet systems, similar to the ones that are observed, can be in a stable Kozai-resonant state, assuming a mutual inclination of the orbital planes of order Imut∼40-60°. Five known multi-planet systems that are not in mean motion resonance were selected, according to defined criteria, as ``possible prototypes'' (υ Andromedae, HD 12661, HD 169830, HD 74156, HD 155358). We performed a parametric study, integrating several sets of orbits of the two planets, obtained by varying the (unknown) inclination of their orbital planes and their nodal longitudes, thus changing the values of their masses and mutual inclination. We also take into account the reported observational errors on the orbital elements. These numerical results are characterized using analytical secular theory and frequency analysis. Surface of section techniques are also used to distinguish between stable and chaotic motions. Frequency analysis offers a reliable way of identifying the Kozai resonance in a general reference frame, where the argument of the pericenter of the inner planet does not necessarily librate around ±90° as in the frame of the Laplace plane, through the non-coupling of the eccentricities of the two planets. We find that four of the five selected systems (υ Andromedae, HD 12661, HD 169830 and HD 74156) could in principle be in Kozai resonance, as their eccentricities and apsidal orientations are such that the system enters in the stability region of the Kozai resonance in 20-70% of the cases, provided that their mutual inclination is at least 45°. Thus, a large fraction of the observed multi-planet systems has observed orbital characteristics that are consistent with stable, Kozai-type, motion in 3D. Unstable sets of orbits are also found, due to the chaos that develops around the stability islands of the Kozai resonance. A variety of physical mechanisms that could generate the necessary large mutual inclinations are discussed, including (a) planet formation; (b) type II migration and resonant interactions during the gas-dominated phase; (c) planetesimal-driven migration and resonance crossing during the gas-free era; (d) multi-planet scattering, caused by the presence of an additional planet.

Abstract Copyright:

Journal keyword(s): planetary systems - celestial mechanics - methods: N-body simulations - methods: analytical

Simbad objects: 9

goto Full paper

goto View the references in ADS

Number of rows : 9
N Identifier Otype ICRS (J2000)
RA
ICRS (J2000)
DEC
Mag U Mag B Mag V Mag R Mag I Sp type #ref
1850 - 2024
#notes
1 * ups And d Pl 01 36 47.8415443907 +41 24 19.651368029           ~ 164 1
2 * ups And c Pl 01 36 47.8415443907 +41 24 19.651368029           ~ 156 1
3 * ups And PM* 01 36 47.8415443907 +41 24 19.651368029 4.70 4.64 4.10 3.64 3.35 F9V 963 1
4 * ups And B PM* 01 36 50.4047651407 +41 23 32.122848870       13.65   M4.5V 21 0
5 HD 12661 PM* 02 04 34.2881404104 +25 24 51.513637932   8.16   7.0   K0V 259 1
6 HD 74156d Pl? 08 42 25.1219511432 +04 34 41.145751740           ~ 19 1
7 HD 74156 PM* 08 42 25.1219511432 +04 34 41.145751740       7.2   G1V 227 2
8 HD 155358 PM* 17 09 34.6176428924 +33 21 21.085565784       7.0   G0 160 1
9 HD 169830 * 18 27 49.4849984976 -29 49 00.700831380   6.406 5.902 7.01   F7V 280 1

To bookmark this query, right click on this link: simbad:objects in 2009A&A...493..677L and select 'bookmark this link' or equivalent in the popup menu