SIMBAD references

2009A&A...494..591C - Astronomy and Astrophysics, volume 494, 591-610 (2009/2-1)

Abundances in the Galactic bulge: results from planetary nebulae and giant stars.

CHIAPPINI C., GORNY S.K., STASINSKA G. and BARBUY B.

Abstract (from CDS):

Our understanding of the chemical evolution (CE) of the Galactic bulge requires the determination of abundances in large samples of giant stars and planetary nebulae (PNe). Studies based on high resolution spectroscopy of giant stars in several fields of the Galactic bulge obtained with very large telescopes have allowed important progress. We discuss PNe abundances in the Galactic bulge and compare these results with those presented in the literature for giant stars. We present the largest, high-quality data-set available for PNe in the direction of the Galactic bulge (inner-disk/bulge). For comparison purposes, we also consider a sample of PNe in the Large Magellanic Cloud (LMC). We derive the element abundances in a consistent way for all the PNe studied. By comparing the abundances for the bulge, inner-disk, and LMC, we identify elements that have not been modified during the evolution of the PN progenitor and can be used to trace the bulge chemical enrichment history. We then compare the PN abundances with abundances of bulge field giant. At the metallicity of the bulge, we find that the abundances of O and Ne are close to the values for the interstellar medium at the time of the PN progenitor formation, and hence these elements can be used as tracers of the bulge CE, in the same way as S and Ar, which are not expected to be affected by nucleosynthetic processes during the evolution of the PN progenitors. The PN oxygen abundance distribution is shifted to lower values by 0.3 dex with respect to the distribution given by giants. A similar shift appears to occur for Ne and S. We discuss possible reasons for this PNe-giant discrepancy and conclude that this is probably due to systematic errors in the abundance derivations in either giants or PNe (or both). We issue an important warning concerning the use of absolute abundances in CE studies.

Abstract Copyright:

Journal keyword(s): stars: abundances - ISM: planetary nebulae: general - Galaxy: bulge - Galaxy: abundances

VizieR on-line data: <Available at CDS (J/A+A/494/591): table1a.dat table1a.txt table1b.dat table1b.txt table1c.dat table1c.txt>

Status at CDS:  

Simbad objects: 253

goto Full paper

goto View the reference in ADS

To bookmark this query, right click on this link: simbad:2009A&A...494..591C and select 'bookmark this link' or equivalent in the popup menu


2020.04.08-18:45:17

© Université de Strasbourg/CNRS

    • Contact