SIMBAD references

2009A&A...505..339L - Astronomy and Astrophysics, volume 505, 339-350 (2009/10-1)

Stellar coronal magnetic fields and star-planet interaction.

LANZA A.F.

Abstract (from CDS):

Evidence of magnetic interaction between late-type stars and close-in giant planets is provided by the observations of stellar hot spots rotating synchronously with the planets and showing an enhancement of chromospheric and X-ray fluxes. Possible photospheric signatures of such an interaction have also been reported. We investigate star-planet interaction in the framework of a magnetic field model of a stellar corona, considering the interaction between the coronal field and that of a planetary magnetosphere moving through the corona. This is motivated, among other reasons, by the difficulty of accounting for the energy budgets of the interaction phenomena with previous models. A linear force-free model is applied to describe the coronal field and study the evolution of its total magnetic energy and relative helicity according to the boundary conditions at the stellar surface and the effects related to the planetary motion through the corona.The energy budget of the star-planet interaction is discussed, assuming that the planet may trigger a release of the energy of the coronal field by decreasing its relative helicity. The observed intermittent character of the star-planet interaction is explained by a topological change in the stellar coronal field, induced by a variation in its relative helicity. The model predicts the formation of many prominence-like structures in the case of highly active stars owing to the accumulation of matter evaporated from the planet inside an azimuthal flux rope in the outer corona. Moreover, the model can explain why stars accompanied by close-in planets have a higher X-ray luminosity than those with distant planets. It predicts that the best conditions for detecting radio emission from the exoplanets and their host stars are achieved when the field topology is characterized by field lines connected to the surface of the star, leading to a chromospheric hot spot rotating synchronously with the planet.The main predictions of the model can be verified with current observational techniques, by a simultaneous monitoring of the chromospheric flux and X-ray (or radio) emission, and spectropolarimetric observations of the photospheric magnetic fields.

Abstract Copyright:

Journal keyword(s): stars: planetary systems - stars: activity - stars: late-type - stars: magnetic fields - stars: general

Simbad objects: 11

goto Full paper

goto View the reference in ADS

To bookmark this query, right click on this link: simbad:2009A&A...505..339L and select 'bookmark this link' or equivalent in the popup menu


2019.10.22-14:44:35

© Université de Strasbourg/CNRS

    • Contact