SIMBAD references

2009ApJ...696..994D - Astrophys. J., 696, 994-1020 (2009/May-1)

The diverse broadband light curves of Swift gamma-ray bursts reproduced with the cannonball model.

DADO S., DAR A. and DE RUJULA A.

Abstract (from CDS):

Two radiation mechanisms, inverse Compton scattering (ICS) and synchrotron radiation (SR), suffice within the Cannonball (CB) model of long gamma-ray bursts (LGRBs) and X-ray flashes (XRFs) to provide a very simple and accurate description of their observed prompt emission and afterglows (AGs). Simple as they are, the two mechanisms and the burst environment generate the rich structure of the light curves at all frequencies and times. This is demonstrated for 33 selected Swift LGRBs and XRFs, which are well sampled from early until late time and faithfully represent the entire diversity of the broadband light curves of Swift LGRBs and XRFs. Their prompt gamma-ray and X-ray emission is dominated by ICS of "glory" light. During their fast decline phase, ICS is taken over by SR, which dominates their broadband AG. The pulse shape and spectral evolution of the gamma-ray peaks and the early-time X-ray flares, and even the delayed optical "humps" in XRFs, are correctly predicted. The "canonical" and noncanonical X-ray light curves and the chromatic behavior of the broadband AGs are well reproduced. In particular, in canonical X-ray light curves, the initial fast decline and rapid softening of the prompt emission, the transition to the plateau phase, the subsequent gradual steepening of the plateau to an asymptotic power-law decay, and the transition from chromatic to achromatic behavior of the light curves agree well with those predicted by the CB model. The Swift early-time data on XRF 060218 are inconsistent with a blackbody emission from a shock breakout through a stellar envelope. Instead, they are well described by ICS of glory light by a jet breaking out from SN2006aj.

Abstract Copyright:

Journal keyword(s): gamma rays: bursts

CDS comments: GRB 030213 is a misprint for GRB 031203.

Simbad objects: 47

goto Full paper

goto View the reference in ADS

To bookmark this query, right click on this link: simbad:2009ApJ...696..994D and select 'bookmark this link' or equivalent in the popup menu


2020.02.17-17:40:46

© Université de Strasbourg/CNRS

    • Contact