SIMBAD references

2009ApJ...700..161S - Astrophys. J., 700, 161-182 (2009/July-3)

Mid-IR luminosities and UV/Optical star formation rates at z < 1.4.

SALIM S., DICKINSON M., RICH R.M., CHARLOT S., LEE J.C., SCHIMINOVICH D., PEREZ-GONZALEZ P.G., ASHBY M.L.N., PAPOVICH C., FABER S.M., IVISON R.J., FRAYER D.T., WALTON J.M., WEINER B.J., CHARY R.-R., BUNDY K., NOESKE K. and KOEKEMOER A.M.

Abstract (from CDS):

Ultraviolet (UV) nonionizing continuum and mid-infrared (IR) emission constitute the basis of two widely used star formation (SF) indicators at intermediate and high redshifts. We study 2430 galaxies with z < 1.4 in the Extended Groth Strip with deep MIPS 24 µm observations from FIDEL, spectroscopy from DEEP2, and UV, optical, and near-IR photometry from the AEGIS. The data are coupled with dust-reddened stellar population models and Bayesian spectral energy distribution (SED) fitting to estimate dust-corrected star formation rates (SFRs). In order to probe the dust heating from stellar populations of various ages, the derived SFRs were averaged over various timescales–from 100 Myr for "current" SFR (corresponding to young stars) to 1-3 Gyr for long-timescale SFRs (corresponding to the light-weighted age of the dominant stellar populations). These SED-based UV/optical SFRs are compared to total IR luminosities extrapolated from 24 µm observations, corresponding to 10-18 µm rest frame. The total IR luminosities are in the range of normal star-forming galaxies and luminous IR galaxies (1010-1012 L). We show that the IR luminosity can be estimated from the UV and optical photometry to within a factor of 2, implying that most z < 1.4 galaxies are not optically thick. We find that for the blue, actively star-forming galaxies the correlation between the IR luminosity and the UV/optical SFR shows a decrease in scatter when going from shorter to longer SFR-averaging timescales. We interpret this as the greater role of intermediate age stellar populations in heating the dust than what is typically assumed. Equivalently, we observe that the IR luminosity is better correlated with dust-corrected optical luminosity than with dust-corrected UV light. We find that this holds over the entire redshift range. Many so-called green valley galaxies are simply dust-obscured actively star-forming galaxies. However, there exist 24 µm detected galaxies, some with LIR>1011 L, yet with little current SF. For them a reasonable amount of dust absorption of stellar light (but presumably higher than in nearby early-type galaxies) is sufficient to produce the observed levels of IR, which includes a large contribution from intermediate and old stellar populations. In our sample, which contains very few ultraluminous IR galaxies, optical and X-ray active galactic nuclei do not contribute on average more than ∼50% to the mid-IR luminosity, and we see no evidence for a large population of "IR excess" galaxies.

Abstract Copyright:

Journal keyword(s): galaxies: active - galaxies: evolution - galaxies: fundamental parameters - infrared: galaxies - surveys - ultraviolet: galaxies

Simbad objects: 3

goto Full paper

goto View the references in ADS

To bookmark this query, right click on this link: simbad:2009ApJ...700..161S and select 'bookmark this link' or equivalent in the popup menu