2009ApJ...704L.124O


Query : 2009ApJ...704L.124O

2009ApJ...704L.124O - Astrophys. J., 704, L124-L128 (2009/October-3)

Stellar kinematics of young clusters in turbulent hydrodynamic simulations.

OFFNER S.S.R., HANSEN C.E. and KRUMHOLZ M.R.

Abstract (from CDS):

The kinematics of newly formed star clusters are interesting both as a probe of the state of the gas clouds from which the stars form, and because they influence planet formation, stellar mass segregation, cluster disruption, and other processes controlled in part by dynamical interactions in young clusters. However, to date there have been no attempts to use simulations of star cluster formation to investigate how the kinematics of young stars change in response to variations in the properties of their parent molecular clouds. In this Letter, we report the results of turbulent self-gravitating simulations of cluster formation in which we consider both clouds in virial balance and those undergoing global collapse. We find that stars in these simulations generally have velocity dispersions smaller than that of the gas by a factor of ∼5, independent of the dynamical state of the parent cloud, so that subvirial stellar velocity dispersions arise naturally even in virialized molecular clouds. The simulated clusters also show large-scale stellar velocity gradients of ∼0.2-2 km/s/pc and strong correlations between the centroid velocities of stars and gas, both of which are observed in young clusters. We conclude that star clusters should display subvirial velocity dispersions, large-scale velocity gradients, and strong gas-star velocity correlations regardless of whether their parent clouds are in virial balance, and, conversely, that observations of these features cannot be used to infer the dynamical state of the parent gas clouds.

Abstract Copyright:

Journal keyword(s): hydrodynamics - ISM: clouds - ISM: kinematics and dynamics - methods: numerical - stars: formation - turbulence

Simbad objects: 3

goto Full paper

goto View the references in ADS

Number of rows : 3
N Identifier Otype ICRS (J2000)
RA
ICRS (J2000)
DEC
Mag U Mag B Mag V Mag R Mag I Sp type #ref
1850 - 2024
#notes
1 NAME Perseus Cloud SFR 03 35.0 +31 13           ~ 1363 0
2 NAME Orion Nebula Cluster OpC 05 35.0 -05 29           ~ 2330 0
3 NAME Ophiuchus Molecular Cloud SFR 16 28 06 -24 32.5           ~ 3628 1

To bookmark this query, right click on this link: simbad:objects in 2009ApJ...704L.124O and select 'bookmark this link' or equivalent in the popup menu