2009ApJ...707.1131P


C.D.S. - SIMBAD4 rel 1.7 - 2021.01.22CET20:12:55

2009ApJ...707.1131P - Astrophys. J., 707, 1131-1140 (2009/December-3)

Neutrino emission from Cooper pairs and minimal cooling of neutron stars.

PAGE D., LATTIMER J.M., PRAKASH M. and STEINER A.W.

Abstract (from CDS):

The minimal cooling paradigm for neutron star cooling assumes that enhanced cooling due to neutrino emission from any direct Urca process, due either to nucleons or to exotica such as hyperons, Bose condensates, or deconfined quarks, does not occur. Previous studies showed that the observed temperatures of young, cooling, isolated neutron stars with ages between 102 and 105 yr, with the possible exception of the pulsar in the supernova remnant CTA 1, are consistent with predictions of the minimal cooling paradigm as long as the neutron 3 P2 pairing gap present in the stellar core is of moderate size. Recently, it has been found that Cooper-pair neutrino emission from the vector channel is suppressed by a large factor, of the order of 10–3, compared to the original estimates that violated vector current conservation. We show that Cooper-pair neutrino emission remains, nevertheless, an efficient cooling mechanism through the axial channel. As a result, the elimination of neutrino emission from Cooper-paired nucleons through the vector channel has only minor effects on the long-term cooling of neutron stars within the minimal cooling paradigm. We further quantify precisely the effect of the size of the neutron 3 P2 gap and demonstrate that consistency between observations and the minimal cooling paradigm requires that the critical temperature Tc for this gap covers a range of values between T min_ c_≲ 0.2x109 up to T maxc≳ 0.5x109 in the core of the star. This range of values guarantees that the Cooper-pair neutrino emission is operating efficiently in stars with ages between 103 to 105 yr, leading to the coldest predicted temperatures for young neutron stars. In addition, it is required that young neutron stars have heterogeneous envelope compositions: some must have light-element compositions and others must have heavy-element compositions. Unless these two conditions are fulfilled, about half of the observed young cooling neutron stars are inconsistent with the minimal cooling paradigm and provide evidence for the existence of enhanced cooling.

Abstract Copyright:

Journal keyword(s): dense matter - equation of state - neutrinos - stars: neutron

Simbad objects: 34

goto Full paper

goto View the reference in ADS

Number of rows : 34

N Identifier Otype ICRS (J2000)
RA
ICRS (J2000)
DEC
Mag U Mag B Mag V Mag R Mag I Sp type #ref
1850 - 2021
#notes
1 TYC 4018-3227-1 * 00 02 55.7097176984 +62 46 17.666764800   12.49 11.67     ~ 38 1
2 PSR J0007+7303 Psr 00 06 34.20 +73 11 06.6           ~ 150 1
3 SNR G119.5+10.2 SNR 00 06.6 +72 47           ~ 238 1
4 SNR G130.7+03.1 SNR 02 05 37.0 +64 49 42           ~ 573 4
5 PSR J0205+6449 Psr 02 05 37.92 +64 49 42.8           ~ 215 1
6 V* CM Tau Psr 05 34 31.93830 +22 00 52.1758           ~ 4852 1
7 M 1 SNR 05 34 31.94 +22 00 52.2           ~ 5685 4
8 NGC 2060 SNR 05 37 51.4470067818 -69 10 23.957283532   9.69 9.59     ~ 326 2
9 PSR J0538+2813 Psr 05 38 25.06 +28 17 11.0           ~ 168 2
10 NAME Geminga Psr 06 33 54.153 +17 46 12.91           ~ 1104 0
11 PSR B0656+14 Psr 06 59 48.183 +14 14 21.54   24.85 24.90     ~ 772 1
12 RX J0720.4-3125 N* 07 20 24.961 -31 25 50.21   26.1   27.0   ~ 285 0
13 PSR J0821-4300 Psr 08 21 58.2 -43 00 22           ~ 115 2
14 NAME Pup A SNR 08 24 07 -42 59.8           ~ 530 1
15 NAME Vela XYZ Rad 08 34.0 -45 50           ~ 1132 2
16 NAME Vela Pulsar Psr 08 35 20.65525 -45 10 35.1545     15.10     ~ 2090 1
17 PSR B1055-52 Psr 10 57 58.970 -52 26 56.52           ~ 683 0
18 PSR J1119-6127 Psr 11 19 14.30 -61 27 49.5           ~ 340 1
19 PSR J1124-5916 Psr 11 24 39.1 -59 16 20           ~ 136 1
20 PSR J1210-5226 Psr 12 10 00.88 -52 26 28.4           ~ 207 1
21 SNR G315.0-02.3 SNR 14 43 00 -62 30.0           ~ 348 1
22 PSR B1706-44 Psr 17 09 42.62 -44 29 05.8     13.30     ~ 582 1
23 PSR B1757-24 Psr 18 01 00.016 -24 51 27.50           ~ 215 1
24 GRS G127.10 +00.50 Rad 18 39.0 -04 58           ~ 8 0
25 RX J1856.6-3754 N* 18 56 35.11 -37 54 30.5     25.7     ~ 391 0
26 SNR G065.2+05.7 SNR 19 33.0 +31 10           ~ 90 0
27 NAME Cyg Loop SNR 20 51.0 +30 40           ~ 836 0
28 SNR G093.2+06.7 SNR 20 52 25 +55 19.3           ~ 73 0
29 SNR G084.2-00.8 SNR 20 53.3 +43 27           ~ 74 0
30 NAME Cas A SNR 23 23 24.000 +58 48 54.00     14.30     ~ 2463 1
31 CXOU J232327.8+584842 X 23 23 27.85 +58 48 42.8           ~ 22 1
32 PSR B2334+61 Psr 23 37 05.779 +61 51 01.69           ~ 168 1
33 SNR G114.3+00.3 SNR 23 37 05.780 +61 51 01.69           ~ 111 1
34 CTB 1 SNR 23 59 13 +62 26.2           ~ 142 0

    Equat.    Gal    SGal    Ecl

To bookmark this query, right click on this link: simbad:objects in 2009ApJ...707.1131P and select 'bookmark this link' or equivalent in the popup menu


2021.01.22-20:12:55

© Université de Strasbourg/CNRS

    • Contact