2010ApJ...711..399Q


C.D.S. - SIMBAD4 rel 1.7 - 2020.01.24CET09:26:48

2010ApJ...711..399Q - Astrophys. J., 711, 399-416 (2010/March-1)

High-resolution submillimeter multiline observations of G19.61-0.23: small-scale chemistry.

QIN S.-L., WU Y., HUANG M., ZHAO G., LI D., WANG J.-J. and CHEN S.

Abstract (from CDS):

We present the Submillimeter Array (SMA) observations of molecular lines at 330 and 340 GHz toward G19.61 - 0.23. The SMA observations have a spatial resolution of ∼2'' and a bandpass of 2x2 GHz bandwidth. With the SMA data, we have detected 131 molecular transitions. Ninety-four molecular transitions from 17 species and their isotopomers are identified, including complex organic molecules and simple linear molecules. Most of the complex molecules (CH3OH, 13CH3OH, C2H5OH, HCOOCH3, HNCO, NH2CHO, CH3CN, and CH3CH2CN) have a sufficient number of transitions in this observation to allow analysis using the rotational temperature diagram method. The results from rotation temperature diagram fitting have shown that the complex nitrogen-bearing molecules have higher rotation temperatures (296-609 K) and lower column densities (6.5x1015-6.4x1016/cm2). In contrast, the temperatures and column densities of the complex oxygen-bearing molecules range from 95 to 151 K, and from 1.1x1016 to 5.2x1017/cm2, respectively. The H2 column density is estimated from the submillimeter continuum, and the fractional abundances of various species relative to H2 are calculated. The oxygen-bearing molecules have higher fractional abundances than those of the nitrogen-bearing molecules. The different gas temperatures and fractional abundances suggest a chemical differentiation between oxygen- and nitrogen-bearing molecules. The images of the spatial distribution of different species have shown that the oxygen-bearing and nitrogen-bearing molecules peak at different positions. Through comparing the rotation temperatures and fractional abundances with the spatial distributions of the molecules, we discuss possible chemical processes for producing the complex molecules, as well as nitrogen and oxygen differentiation in G19.61 - 0.23.

Abstract Copyright:

Journal keyword(s): ISM: abundances - ISM: individual objects: G19.61-0.23 - ISM: molecules - radio lines: ISM - stars: formation

Simbad objects: 12

goto Full paper

goto View the reference in ADS

Number of rows : 12

N Identifier Otype ICRS (J2000)
RA
ICRS (J2000)
DEC
Mag U Mag B Mag V Mag R Mag I Sp type #ref
1850 - 2020
#notes
1 NAME W 3 OH HII 02 27 04.1 +61 52 22           ~ 933 2
2 NAME Orion-KL SFR 05 35 14.16 -05 22 21.5           ~ 1960 1
3 NAME Orion Core ? 05 35 14.5 -05 22 30           ~ 172 0
4 NAME ORI MOL CLOUD MoC 05 56 -01.8           ~ 826 1
5 NGC 2264 OpC 06 40 58 +09 53.7     3.9     ~ 1560 1
6 QSO B1741-038 QSO 17 43 58.85613396 -03 50 04.6166450     18.5 17.98   ~ 470 1
7 NAME Gal Center reg 17 45 40.04 -29 00 28.1           ~ 11176 0
8 NAME Sgr B2 (North) Rad 17 47 20.2 -28 22 21           ~ 500 1
9 NAME Sgr B2 MoC 17 47 20.4 -28 23 07           ~ 1870 1
10 GAL 019.61-00.23 HII 18 27 38.0 -11 56 42           ~ 136 0
11 QSO B1921-293 BLL 19 24 51.05595514 -29 14 30.1210524   18.71 18.21 15.07   ~ 661 0
12 3C 454.3 QSO 22 53 57.74798 +16 08 53.5611   16.57 16.10 15.22   ~ 2458 2

    Equat.    Gal    SGal    Ecl

To bookmark this query, right click on this link: simbad:objects in 2010ApJ...711..399Q and select 'bookmark this link' or equivalent in the popup menu


2020.01.24-09:26:48

© Université de Strasbourg/CNRS

    • Contact