SIMBAD references

2010ApJ...719..671Z - Astrophys. J., 719, 671-684 (2010/August-2)

On the orbital evolution of a giant planet pair embedded in a gaseous disk. II. A Saturn-Jupiter configuration.


Abstract (from CDS):

We carry out a series of high-resolution (1024x1024) hydrodynamic simulations to investigate the orbital evolution of a Saturn-Jupiter pair embedded in a gaseous disk. This work extends the results of our previous work by exploring a different orbital configuration–Jupiter lies outside Saturn (q < 1, where q ≡ Mi/Mo is the mass ratio of the inner planet and the outer one). We focus on the effects of different initial separations (d) between the two planets and the various surface density profiles of the disk, where σ {vprop} r –α. We also compare the results of different orbital configurations of the planet pair. Our results show that (1) when the initial separation is relatively large (d>diLr, where diLr is the distance between Jupiter and its first inner Lindblad resonance), the two planets undergo divergent migration. However, the inward migration of Saturn could be halted when Jupiter compresses the inner disk in which Saturn is embedded. (2) Convergent migration occurs when the initial separation is smaller (d < diLr) and the density slope of the disk is nearly flat (α < 1/2). Saturn is then forced by Jupiter to migrate inward where the two planets are trapped into mean motion resonances (MMRs), and Saturn may get very close to the central star. (3) In the case of q < 1, the eccentricity of Saturn could be excited to a very high value (eS∼ 0.4-0.5) by the MMRs and the system could maintain stability. These results explain the formation of MMRs in the exoplanet systems where the outer planet is more massive than the inner one. It also helps us to understand the origin of the "hot Jupiter/Saturn" with a highly eccentric orbit.

Abstract Copyright:

Journal keyword(s): planet-disk interactions - protoplanetary disks

Simbad objects: 27

goto Full paper

goto View the reference in ADS

To bookmark this query, right click on this link: simbad:2010ApJ...719..671Z and select 'bookmark this link' or equivalent in the popup menu


© Université de Strasbourg/CNRS

    • Contact