SIMBAD references

2010ApJ...721..995D - Astrophys. J., 721, 995-1013 (2010/October-1)

The Spitzer c2d survey of nearby dense cores. IX. Discovery of a very low luminosity object driving a molecular outflow in the dense core L673-7.

DUNHAM M.M., EVANS N.J., BOURKE T.L., MYERS P.C., HUARD T.L. and STUTZ A.M.

Abstract (from CDS):

We present new infrared, submillimeter, and millimeter observations of the dense core L673-7 and report the discovery of a low-luminosity, embedded Class 0 protostar driving a molecular outflow. L673-7 is seen in absorption against the mid-infrared background in 5.8, 8, and 24 µm Spitzer images, allowing for a derivation of the column density profile and total enclosed mass of L673-7, independent of dust temperature assumptions. Estimates of the core mass from these absorption profiles range from 0.2to4.5 M. Millimeter continuum emission indicates a mass of ∼2 M, both from a direct calculation assuming isothermal dust and from dust radiative transfer models constrained by the millimeter observations. We use dust radiative transfer models to constrain the internal luminosity of L673-7, defined to be the luminosity of the central source and excluding the luminosity from external heating, to be Lint= 0.01-0.045 L, with Lint∼ 0.04 L the most likely value. L673-7 is thus classified as a very low luminosity object (VeLLO), and is among the lowest luminosity VeLLOs yet studied. We calculate the kinematic and dynamic properties of the molecular outflow in the standard manner. From the outflow properties and standard assumptions regarding the driving of outflows, we calculate the time-averaged protostellar mass accretion rate, total protostellar mass accreted, and expected accretion luminosity to be <{dot}M_acc >≥1.2 ×10^-6 sin   i/cos^2   i M/yr, {M_acc ≥0.07   1/cos   i} M, and Lacc ≥ 0.36 L, respectively. The discrepancy between this calculated Lacc and the Lintderived from dust radiative transfer models indicates that the current accretion rate is much lower than the average rate over the lifetime of the outflow. Although the protostar embedded within L673-7 is consistent with currently being substellar, it is unlikely to remain as such given the substantial mass reservoir remaining in the core.

Abstract Copyright:

Journal keyword(s): brown dwarfs - ISM: individual objects: L673-7 - stars: formation - stars: low-mass

Nomenclature: [DEB2010] L673-7-IRS.

Simbad objects: 14

goto Full paper

goto View the references in ADS

To bookmark this query, right click on this link: simbad:2010ApJ...721..995D and select 'bookmark this link' or equivalent in the popup menu