2010ApJ...722L.209M


Query : 2010ApJ...722L.209M

2010ApJ...722L.209M - Astrophys. J., 722, L209-L214 (2010/October-3)

Revisiting the influence of unidentified binaries on velocity dispersion measurements in ultra-faint stellar systems.

McCONNACHIE A.W. and COTE P.

Abstract (from CDS):

Velocity dispersion measurements of recently discovered Milky Way satellites with MV≳ -7 imply that they posses high mass-to-light ratios. The expected velocity dispersions due to their baryonic mass are ∼0.2 km/s, but values ≳3 km/s are measured. We perform Monte Carlo simulations of mock radial velocity measurements of these systems assuming that they have mass-to-light ratios similar to globular clusters and posses an unidentified binary star population, to determine if these stars could boost the velocity dispersion to the observed values. We find that this hypothesis is unlikely to produce dispersions much in excess of ∼4.5 km/s, in agreement with previous work. However, for the systems with the potentially smallest velocity dispersions, values consistent with observations are produced in 5%-40% of our simulations for binary fractions in excess of fbin(P ≤ 10 yr)∼ 5%. This sample includes the dwarf galaxy candidates that lie closest to classical globular clusters in MV- rhspace. Considered as a population, it is unlikely that all of these dwarf galaxy candidates have mass-to-light ratios typical of globular clusters, but boosting of the observed dispersion by binaries from near-zero values cannot be ruled out at high confidence for several individual dwarf galaxy candidates. Given the importance of obtaining accurate velocity dispersions and dynamical masses for the faintest satellites, it is clearly desirable to directly exclude the possible effect of binaries on these systems. This requires multi-epoch radial velocity measurements with individual uncertainties of ≲1 km/s to identify spectroscopic binaries with orbital velocities of the order of the observed velocity dispersion.

Abstract Copyright:

Journal keyword(s): binaries: general - galaxies: dwarf - galaxies: kinematics and dynamics - galaxies: star clusters: general - galaxies: structure - Local Group

Simbad objects: 19

goto Full paper

goto View the references in ADS

Number of rows : 19
N Identifier Otype ICRS (J2000)
RA
ICRS (J2000)
DEC
Mag U Mag B Mag V Mag R Mag I Sp type #ref
1850 - 2024
#notes
1 NAME Segue 2 G 02 19 16.0 +20 10 31     15.2     ~ 262 0
2 NAME UMa II Galaxy G 08 51 30.0 +63 07 48     13.3     ~ 375 0
3 NAME Leo T G 09 34 53.4 +17 03 05     15.1     ~ 391 0
4 NAME Segue 1 G 10 07 03.2 +16 04 25     15.3     ~ 465 1
5 NAME UMa I Galaxy G 10 34 52.80 +51 55 12.0     14.4     ~ 329 1
6 NAME Willman 1 G 10 49 21.0 +51 03 00     15.2     ~ 320 0
7 NAME Leo V G 11 31 09.60 +02 13 12.0     16.0     ~ 204 0
8 NAME Leo IV Dwarf Galaxy G 11 32 57.0 -00 32 00     15.1     ~ 384 1
9 NAME Coma Dwarf Galaxy G 12 26 59.0 +23 54 15     14.1     ~ 453 1
10 NAME CVn II dSph G 12 57 09.6 +34 19 12     16.1     ~ 264 2
11 NAME CVn I dSph G 13 28 03.5 +33 33 21     13.1     ~ 327 1
12 NAME Bootes III G 13 57 07.4 +26 46 30     12.6     ~ 96 1
13 NAME Bootes II G 13 58 00.0 +12 51 00     15.4     ~ 241 0
14 NAME Bootes Dwarf Spheroidal Galaxy G 14 00 00.0 +14 30 00     12.8     ~ 438 0
15 NAME UMi Galaxy G 15 09 08.0 +67 13 21   13.60 10.6     ~ 1360 0
16 ACO 2151 ClG 16 05 15.0 +17 44 55           ~ 578 3
17 NAME Dra dSph G 17 20 14.335 +57 55 16.39   12.40 10.6     ~ 1332 1
18 NGC 6397 GlC 17 40 42.09 -53 40 27.6     5.17     ~ 1976 0
19 NAME Local Group GrG ~ ~           ~ 8393 0

To bookmark this query, right click on this link: simbad:objects in 2010ApJ...722L.209M and select 'bookmark this link' or equivalent in the popup menu