SIMBAD references

2010ApJ...723..971G - Astrophys. J., 723, 971-984 (2010/November-2)

Detailed numerical simulations on the formation of pillars around H II regions.

GRITSCHNEDER M., BURKERT A., NAAB T. and WALCH S.

Abstract (from CDS):

We study the structural evolution of turbulent molecular clouds under the influence of ionizing radiation emitted from a nearby massive star by performing a high-resolution parameter study with the iVINE code. The temperature is taken to be 10 K or 100 K, the mean number density is either 100/cm3 or 300/cm3. Furthermore, the turbulence is varied between Mach 1.5 and Mach 12.5, the main driving scale of the turbulence is varied between 1 pc and 8 pc. We vary the ionizing flux by an order of magnitude, corresponding to allowing between 0.5% and 5% of the mass in the domain to be ionized immediately. In our simulations, the ionizing radiation enhances the initial turbulent density distribution and thus leads to the formation of pillar-like structures observed adjacent to H II regions in a natural way. Gravitational collapse occurs regularly at the tips of the structures. We find a clear correlation between the initial state of the turbulent cold cloud and the final morphology and physical properties of the structures formed. The most favorable regime for the formation of pillars is Mach 4-10. Structures and therefore stars only form if the initial density contrast between the high-density unionized gas and the gas that is going to be ionized is lower than the temperature contrast between the hot and the cold gas. The density of the resulting pillars is determined by a pressure equilibrium between the hot and the cold gas. A thorough analysis of the simulations shows that the complex kinematical and geometrical structure of the formed elongated filaments reflects that of observed pillars to an impressive level of detail. In addition, we find that the observed line-of-sight velocities allow for a distinct determination of different formation mechanisms. Comparing the current simulations to previous results and recent observations, we conclude that, e.g., the pillars of creation in M16 formed by the mechanism proposed here and not by the radiation driven implosion of pre-existing clumps.

Abstract Copyright:

Journal keyword(s): H II regions - ISM: bubbles - ISM: kinematics and dynamics - ISM: structure - methods: numerical - stars: formation - turbulence - ultraviolet: ISM

Simbad objects: 18

goto Full paper

goto View the reference in ADS

To bookmark this query, right click on this link: simbad:2010ApJ...723..971G and select 'bookmark this link' or equivalent in the popup menu


2020.08.15-13:42:02

© Université de Strasbourg/CNRS

    • Contact