SIMBAD references

2011A&A...530A..18F - Astronomy and Astrophysics, volume 530A, 18-18 (2011/6-1)

New effective recombination coefficients for nebular NII lines.

FANG X., STOREY P.J. and LIU X.-W.

Abstract (from CDS):

In nebular astrophysics, there has been a long-standing dichotomy in plasma diagnostics between abundance determinations using the traditional method based on collisionally excited lines (CELs), on the one hand, and (optical) recombination lines/continuum, on the other. A number of mechanisms have been proposed to explain the dichotomy. Deep spectroscopy and recombination line analysis of emission line nebulae (planetary nebulae and HII regions) in the past decade have pointed to the existence of another previously unknown component of cold, H-deficient material as the culprit. Better constraints are needed on the physical conditions (electron temperature and density), chemical composition, mass, and spatial distribution of the postulated H-deficient inclusions in order to unravel their astrophysical origins. This requires knowledge of the relevant atomic parameters, most importantly the effective recombination coefficients of abundant heavy element ions such as CII, OII, NII, and NeII, appropriate for the physical conditions prevailing in those cold inclusions (e.g. Te≤1000K). Here we report new ab initio calculations of the effective recombination coefficients for the NII recombination spectrum. We have taken into account the density dependence of the coefficients arising from the relative populations of the fine-structure levels of the ground term of the recombining ion (21/2 and 23/2 in the case of NIII), an elaboration that has not been attempted before for this ion, and it opens up the possibility of electron density determination via recombination line analysis. Photoionization cross-sections, bound state energies, and the oscillator strengths of NII with n≤11 and l≤4 have been obtained using the close-coupling R-matrix method in the intermediate coupling scheme. Photoionization data were computed that accurately map out the near-threshold resonances and were used to derive recombination coefficients, including radiative and dielectronic recombination. Also new is including the effects of dielectronic recombination via high-n resonances lying between the 21/2 and 23/2 levels. The new calculations are valid for temperatures down to an unprecedentedly low level (approximately 100K). The newly calculated effective recombination coefficients allow us to construct plasma diagnostics based on the measured strengths of the NII optical recombination lines (ORLs). The derived effective recombination coefficients are fitted with analytic formulae as a function of electron temperature for different electron densities. The dependence of the emissivities of the strongest transitions of NII on electron density and temperature is illustrated. Potential applications of the current data to electron density and temperature diagnostics for photoionized gaseous nebulae are discussed. We also present a method of determining electron temperature and density simultaneously.

Abstract Copyright:

Journal keyword(s): atomic data - line: formation - HII regions - ISM: atoms - planetary nebulae: general

VizieR on-line data: <Available at CDS (J/A+A/530/A18): table3.dat table4.dat table5.dat table6.dat table7.dat table8.dat table9.dat table10.dat table11.dat table12.dat table13.dat table14.dat table15.dat>

Errata: + corrigendum vol. 550, p. C2 (2013)

Simbad objects: 0

goto Full paper

goto View the references in ADS

To bookmark this query, right click on this link: simbad:2011A&A...530A..18F and select 'bookmark this link' or equivalent in the popup menu