SIMBAD references

2011A&A...536A..78K - Astronomy and Astrophysics, volume 536A, 78-78 (2011/12-1)

Mapping the radial structure of AGN tori.

KISHIMOTO M., HOENIG S.F., ANTONUCCI R., MILLOUR F., TRISTRAM K.R.W. and WEIGELT G.

Abstract (from CDS):

We present mid-IR interferometric observations of six type 1 AGNs at multiple baseline lengths ranging from 27m to 130m, reaching high angular resolutions up to λ/B∼0.02arcsec. For two of the targets, we have simultaneous near-IR interferometric measurements as well, taken within a week. We find that all the objects are partially resolved at long baselines in these IR wavelengths. The multiple-baseline data directly probe the radial distribution of the material on sub-pc scales. We show that for our sample, which is small but spans over ∼2.5 orders of magnitudes in the UV/optical luminosity L of the central engine, the radial distribution clearly and systematically changes with luminosity. The brightness distribution at a given mid-IR wavelength seems to be rather well described by a power law, which makes a simple Gaussian or ring size estimation quite inadequate. In this case, a half-light radius R1/2 can be used as a representative size. We show that the higher luminosity objects become more compact in normalized half-light radii R1/2/Rin in the mid-IR, where Rin is the dust sublimation radius empirically given by the L1/2 fit of the near-IR reverberation radii. This means that, contrary to previous studies, the physical mid-IR emission size (e.g. in pc) is not proportional to L1/2, but increases with L much more slowly. With our current datasets, we find that R1/2∝L0.21±0.05 at 8.5 µm, and R1/2 nearly constant at 13 µm. The derived size information also seems to correlate with the properties of the total flux spectrum, in particular the smaller R1/2/Rin objects having bluer mid-IR spectral shape. We use a power-law temperature/density gradient model as a reference, and infer that the radial surface density distribution of the heated dust grains at a radius r changes from a steep ∼r–1 structure in high luminosity objects to a shallower ∼r0 structure in those of lower luminosity. The inward dust temperature distribution does not seem to smoothly reach the sublimation temperature - on the innermost scale of ∼Rin, a relatively low temperature core seems to co-exist with a slightly distinct brightness concentration emitting roughly at the sublimation temperature.

Abstract Copyright:

Journal keyword(s): galaxies: active - galaxies: Seyfert - infrared: galaxies - techniques: interferometric

Simbad objects: 30

goto Full paper

goto View the reference in ADS

To bookmark this query, right click on this link: simbad:2011A&A...536A..78K and select 'bookmark this link' or equivalent in the popup menu


2021.03.05-02:24:11

© Université de Strasbourg/CNRS

    • Contact