2011ApJ...731..130S


C.D.S. - SIMBAD4 rel 1.7 - 2020.10.31CET11:57:11

2011ApJ...731..130S - Astrophys. J., 731, 130 (2011/April-3)

A Spitzer survey of mid-infrared molecular emission from protoplanetary disks. II. Correlations and local thermal equilibrium models.

SALYK C., PONTOPPIDAN K.M., BLAKE G.A., NAJITA J.R. and CARR J.S.

Abstract (from CDS):

We present an analysis of Spitzer Infrared Spectrograph observations of H2O, OH, HCN, C2H2, and CO2emission, and Keck-NIRSPEC observations of CO emission, from a diverse sample of T Tauri and Herbig Ae/Be circumstellar disks. We find that detections and strengths of most mid-IR molecular emission features are correlated with each other, suggesting a common origin and similar excitation conditions for this mid-infrared line forest. Aside from the remarkable differences in molecular line strengths between T Tauri, Herbig Ae/Be, and transitional disks discussed in Pontoppidan et al., we note that the line detection efficiency is anti-correlated with the 13/30 µm spectral slope, which is a measure of the degree of grain settling in the disk atmosphere. We also note a correlation between detection efficiency and Hα equivalent width, and tentatively with accretion rate, suggesting that accretional heating contributes to line excitation. If detected, H2 O line fluxes are correlated with the mid-IR continuum flux, and other co-varying system parameters, such as L{sstarf}. However, significant sample variation, especially in molecular line ratios, remains, and its origin has yet to be explained. Local thermal equilibrium (LTE) models of the H2 O emission show that line strength is primarily related to the best-fit emitting area, and this accounts for most source-to-source variation in H2 O emitted flux. Best-fit temperatures and column densities cover only a small range of parameter space, near ∼1018/cm2 and 450 K for all sources, suggesting a high abundance of H2 O in many planet-forming regions. Other molecules have a range of excitation temperatures from ∼500to1500 K, also consistent with an origin in planet-forming regions. We find molecular ratios relative to water of ∼10–3 for all molecules, with the exception of CO, for which n(CO)/n(H2O) ∼ 1. However, LTE fitting caveats and differences in the way thermo-chemical modeling results are reported make comparisons with such models difficult, and highlight the need for additional observations coupled with the use of line-generating radiative transfer codes.

Abstract Copyright:

Journal keyword(s): protoplanetary disks

Simbad objects: 75

goto Full paper

goto View the reference in ADS

Number of rows : 75

N Identifier Otype ICRS (J2000)
RA
ICRS (J2000)
DEC
Mag U Mag B Mag V Mag R Mag I Sp type #ref
1850 - 2020
#notes
1 EM* LkHA 270 TT* 03 29 17.6756898303 +31 22 44.898266275   14.5       K2/3IIIe 75 0
2 EM* LkHA 271 Em* 03 29 21.8748368520 +31 15 36.245029969   14.0 14.3     K4.0 57 0
3 EM* LkHA 326 Em* 03 30 44.0132509711 +30 32 46.808287930     16     G 33 0
4 EM* LkHA 327 Em* 03 33 30.416 +31 10 50.41     15     K2 56 0
5 EM* LkHA 330 TT* 03 45 48.2804487421 +32 24 11.851014679   12.30 10.97     F7 121 0
6 V* IP Tau Or* 04 24 57.0823478325 +27 11 56.543062579   14.50   12.46   M0:Ve 192 0
7 V* IQ Tau Or* 04 29 51.5569553814 +26 06 44.854858369 15.43   13.80 12.28 11.11 M0.5 200 0
8 V* FX Tau Or* 04 30 29.618064 +24 26 45.02724   15.18 13.61 13.21   M4 143 0
9 V* V710 Tau ** 04 31 57.79848 +18 21 36.9396           ~ 152 0
10 V* V710 Tau A TT* 04 31 57.8032267772 +18 21 34.726898440       13.87   M2/3e 153 0
11 V* AA Tau Or* 04 34 55.4222683130 +24 28 53.038273587 13.14 13.34 12.20     K5Ve 635 0
12 V* DN Tau Or* 04 35 27.3776240781 +24 14 58.908761629 13.56 12.88 11.50 11.79   M1:Ve 350 0
13 CoKu Tau-Aur Star 4 TT* 04 41 16.8106225314 +28 40 00.077173462   16.40 14.68 14.59   M1.5e 166 0
14 V* DR Tau Or* 04 47 06.2152696011 +16 58 42.814250257 12.03 11.86 10.50 12.19   K5Ve 472 0
15 HD 36112 Ae* 05 30 27.5286772598 +25 19 57.082162439   8.57 8.27     A8Ve 364 0
16 HD 244604 Or* 05 31 57.2512002483 +11 17 41.374206174   9.61 9.43     A0Vesh 58 0
17 HD 36917 Or* 05 34 46.9833806135 -05 34 14.574708752   8.13 8.03     B9III/IV 135 0
18 HD 37258 Ae* 05 36 59.2489032761 -06 09 16.317559872   9.72 9.61 9.56   A3Ve 114 0
19 V* BF Ori Ae* 05 37 13.2623698298 -06 35 00.565420577 10.37 10.00 9.69 10.06 9.31 A7III 271 0
20 HD 37357 Ae* 05 37 47.0795535305 -06 42 30.203876953   8.96 8.85     A1V 96 0
21 HD 37411 Or* 05 38 14.5075249942 -05 25 13.317577897 10.03 9.91 9.79 9.60 9.45 hA3VakA0mA0(eb)_lB 83 0
22 V* RR Tau Ae* 05 39 30.5114685049 +26 22 26.961204895 11.64 12.09 11.28 10.58 10.17 A0:IVe 216 0
23 HD 37806 Be* 05 41 02.2930276072 -02 43 00.729083804 7.67 7.93 7.90     B9/9.5II/III 140 0
24 HD 38087 ** 05 43 00.5750795483 -02 18 45.388281574 7.96 8.40 8.29 8.06 7.89 B3II 151 1
25 HD 38120 Be* 05 43 11.8931815256 -04 59 49.881886291 9.08 9.10 9.1     B9Vnne 75 0
26 HD 50138 Ae* 06 51 33.3989891154 -06 57 59.445949919 6.28 6.68 6.67     A1Ib/II 200 0
27 HD 72106 ** 08 29 34.89852 -38 36 21.1321       9.32   A0IV 62 0
28 V* SX Cha Or* 10 55 59.802000 -77 24 40.12524   16.01 14.57 14.23 12.35 M1.5+M3 80 0
29 V* SY Cha Or* 10 56 30.3882538728 -77 11 39.402450501         11.29 K5Ve 114 0
30 V* TW Cha Or* 10 59 01.0608276980 -77 22 40.946475900     13.40   11.68 K8Ve 116 0
31 V* TW Hya TT* 11 01 51.9054298616 -34 42 17.031550898   11.94 10.50 10.626 9.18 K6Ve 1557 1
32 HD 95881 Em* 11 01 57.6212785173 -71 30 48.313329972   8.37 8.23     A0 88 0
33 V* VW Cha Or* 11 08 01.3974165580 -77 42 28.579297348 13.91 14.04 12.80   10.69 K7+M0 167 0
34 V* VZ Cha Or* 11 09 23.7736314968 -76 23 20.855918834   13.82 12.94   12.14 K7e 125 0
35 V* WX Cha Or* 11 09 58.666944 -77 37 09.03432   14.93 13.85 14.23 12.20 M1+M5 90 0
36 V* XX Cha Or* 11 11 39.6733333784 -76 20 15.037536625   16.67 15.28   12.56 M3Ve 98 1
37 HD 98922 Be* 11 22 31.6740564115 -53 22 11.456030308   6.80 6.76     B9Ve 115 1
38 HD 101412 Be* 11 39 44.4562795603 -60 10 27.717502041   9.465 9.288     A3VaekA0mA0_lB 117 0
39 V* T Cha Or* 11 57 13.5268556629 -79 21 31.521755129   10.00 11.86     K0e 236 1
40 Sz 50 Y*O 13 00 55.3820751133 -77 10 22.247668674   17.64 16.01     M3 41 0
41 CPD-36 6759 Y*O 15 15 48.4459023859 -37 09 16.026315179   9.21 8.708     F8V 361 1
42 CD-33 10685 Or* 15 45 12.8670160093 -34 17 30.646921079 12.47 11.56 10.224 9.60 8.685 K3Ve 222 1
43 V* GW Lup Or* 15 46 44.7292759994 -34 30 35.677245389   13.8       M1.5e 86 0
44 CD-35 10525 Or* 15 49 12.1055573607 -35 39 05.053991067 12.19 12.76 11.66 11.15   K7Ve 240 0
45 THA 15-12 Or* 15 56 09.2067120748 -37 56 06.126159332   13.12 11.93 11.45   M0e 258 0
46 HD 142527 Ae* 15 56 41.8888096574 -42 19 23.245384377   9.04 8.34     F6III 480 1
47 V* RU Lup Or* 15 56 42.3109948086 -37 49 15.473469159 9.27 10.07 9.60     K7/M0e 390 0
48 V* RY Lup Or* 15 59 28.3852522995 -40 21 51.255321659   12.62 9.90     G8/K1IV-V 171 0
49 HD 325367 Or* 16 03 05.4914377137 -40 18 25.426543472   11.40 8.50     M0 283 0
50 V* V856 Sco Ae* 16 08 34.2868591379 -39 06 18.326059778 7.66 7.41 7.05 6.92   A7IIIne_sh 353 0
51 V* V866 Sco Or* 16 11 31.345632 -18 38 25.96200   13.98 12.63 12.81   K0e+K5e 247 0
52 Haro 1-1 Or* 16 21 34.7046243951 -26 12 26.914958774   14.59       K5e 57 0
53 Haro 1-4 Or* 16 25 10.508136 -23 19 14.78820       13.15   K4e 70 0
54 Elia 2-20 TT* 16 26 18.8782824640 -24 28 19.698059817           ~ 95 1
55 GSS 31 TT* 16 26 23.3694945462 -24 20 59.580653864   15.9 14.70 14.33 11.53 K0e 136 1
56 DoAr 25 TT* 16 26 23.6911216715 -24 43 13.886717283       12.65   K5 129 0
57 EM* SR 21A TT* 16 27 10.2776332501 -24 19 12.620553212   16.08 14.10     G1 234 1
58 EM* SR 9 Or* 16 27 40.2858402419 -24 22 04.132012501   12.91 11.533 11.11 10.00 K5e 253 0
59 EM* SR 13 Or* 16 28 45.2753496511 -24 28 18.830243306     13.60 12.40 10.9 M2e 124 0
60 V* V2131 Oph Or* 16 31 15.7390747430 -24 34 02.512884637   12.0 12.05 11.06 10.13 ~ 94 0
61 ROXs 43A TT* 16 31 20.1187037852 -24 30 05.059723324   11.89 10.93     G5IVe 47 0
62 Haro 1-16 Or* 16 31 33.4638378966 -24 27 37.158295501   14.02 12.80     K3e 178 0
63 Haro 1-17 Y*O 16 32 21.9312543188 -24 42 14.835977855   16.76 15.61     M2.5e 37 0
64 V* V1003 Oph Or* 16 34 09.1694383329 -15 48 16.776308800           G5 88 0
65 HD 149914 * 16 38 28.6526648658 -18 13 13.712378415   6.967 6.746     B9.5IV 52 0
66 HD 150193 Be* 16 40 17.9242900066 -23 53 45.192676418 9.69 9.32 8.79 8.41   B9.5Ve 293 0
67 Hen 3-1258 Or* 16 48 45.6323559591 -14 16 35.849943900   14.94 13.34 12.84   K6 82 0
68 EM* AS 209 Or* 16 49 15.3035547820 -14 22 08.642015783   12.62 11.28     K4Ve 241 0
69 HD 163296 Ae* 17 56 21.2882188601 -21 57 21.872343282 7.00 6.93 6.85 6.86 6.67 A1Vep 819 0
70 V* VV Ser Ae* 18 28 47.8619658319 +00 08 39.924642619 12.99 12.63 11.80 11.01 10.24 A5Ve 229 0
71 HBC 672 Em* 18 29 56.8828626544 +01 14 46.339137067   17.6       K8.0 100 0
72 EM* LkHA 348 Em* 18 34 12.6529871707 -00 26 21.801700162     14.3     F6 31 0
73 HD 179218 Ae* 19 11 11.2540715594 +15 47 15.632212730 7.55 7.476 7.39 7.25 7.21 A0Ve 222 0
74 HD 190073 Ae* 20 03 02.5098091524 +05 44 16.658081203 7.91 7.86 7.73   7.65 A2IVe 229 0
75 EM* LkHA 224 Ae* 20 20 29.3500765489 +41 21 28.448014439 14.82 14.08 12.93 12.05 11.08 A4:Ve 91 0

    Equat.    Gal    SGal    Ecl

To bookmark this query, right click on this link: simbad:objects in 2011ApJ...731..130S and select 'bookmark this link' or equivalent in the popup menu


2020.10.31-11:57:11

© Université de Strasbourg/CNRS

    • Contact