SIMBAD references

2011ApJ...733L..11R - Astrophys. J., 733, L11 (2011/May-3)

Imaging the molecular gas properties of a major merger driving the evolution of a z = 2.5 submillimeter galaxy.

RIECHERS D.A., CARILLI C.L.., WALTER F., WEISS A., WAGG J., BERTOLDI F., DOWNES D., HENKEL C. and HODGE J.

Abstract (from CDS):

We report the detection of spatially extended CO(J = 1 ⟶ 0) and CO(J = 5 ⟶ 4) emission in the z = 2.49 submillimeter galaxy (SMG) J123707+6214, using the Expanded Very Large Array and the Plateau de Bure Interferometer. The large molecular gas reservoir is spatially resolved into two CO(J = 1 ⟶ 0) components (northeast and southwest; previously identified in CO J = 3 ⟶ 2 emission) with respective gas masses of 4.3 and 3.5x1010CO/0.8) M. We thus find that the optically invisible northeast component slightly dominates the gas mass in this system. The total molecular gas mass derived from the CO(J = 1 ⟶ 0) observations is ≳ 2.5x larger than estimated from CO(J = 3 ⟶ 2). The two components are at approximately the same redshift, but separated by ∼20 kpc in projection. The morphology is consistent with that of an early-stage merger. The total amount of molecular gas is sufficient to maintain the intense 500 M/yr starburst in this system for at least ∼160 Myr. We derive line brightness temperature ratios of r31= 0.39±0.09 and 0.37±0.10, and r51= 0.26±0.07 and 0.25±0.08 in the two components, respectively, suggesting that the J ≥ 3 lines are substantially subthermally excited. This also suggests comparable conditions for star formation in both components. Given the similar gas masses of both components, this is consistent with the comparable starburst strengths observed in the radio continuum emission. Our findings are consistent with other recent studies that find evidence for lower CO excitation in SMGs than in high-z quasar host galaxies with comparable gas masses. This may provide supporting evidence that both populations correspond to different evolutionary stages in the formation of massive galaxies.

Abstract Copyright:

Journal keyword(s): cosmology: observations - galaxies: active - galaxies: formation - galaxies: high-redshift - galaxies: starburst - radio lines: galaxies

Simbad objects: 7

goto Full paper

goto View the reference in ADS

To bookmark this query, right click on this link: simbad:2011ApJ...733L..11R and select 'bookmark this link' or equivalent in the popup menu


2019.10.19-05:32:17

© Université de Strasbourg/CNRS

    • Contact